• 제목/요약/키워드: Quadrature

검색결과 1,097건 처리시간 0.032초

수중 통신시 다중경로 적응 BISMO (Bi-Switch Modulation)알고리즘 설계 (Design of Multipath Adaptive BISMO-Algorithm in the Underwater Communication)

  • 임병욱;심태보
    • 한국음향학회지
    • /
    • 제27권7호
    • /
    • pp.342-349
    • /
    • 2008
  • 수중통신 시 다중 음파 경로의 생성은 명확한 메시지전송을 어렵게하는 원인중 하나이다. 본 논문에서는 이러한 문제점의 해결을 위하여 각기 다른 경로에 따라 형성된 다중 경로간의 지연 시간을 계산하여 변조주파수변환구간을 생성하는 방법을 제안하였다. 송신단에서는 생성된 변조주파수변환구간의 크기에 따라 메시지를 분할하여 두 개의 주파수를 사용하여 QPSK(Quadrature Phase Shift Keying)방식을 교대로 호핑하여 메시지를 전송 하였다. 이에 대응하여 수신단에서는 수신된 메시지를 알고리즘 설계 시 구축한 프로토콜에 의하여 복조하여 원신호로 복원하는 적응 BISMO 알고리즘을 제안 하였고 모의실험을 통하여 적응적 변조주파수변환구간, 추정 오류율을 계산하였다.

Development of the educational management model for dynamic instability analysis in nanocomposite sandwich beam

  • Wenxi Tang;Chunhui Zhou;Maryam Shokravi;X. Kelaxich
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.9-18
    • /
    • 2024
  • This paper presents the development of an educational management model for analyzing the dynamic instability of nanocomposite sandwich beams. The model aims to provide a comprehensive framework for understanding the behavior of sandwich micro beams with foam cores, featuring top and bottom layers made of smart and porous functionally graded materials (FGM) nanocomposites. The bottom layer is influenced by an external electric field, and the entire beam is supported by a visco-Pasternak foundation, accounting for spring, shear, and damping constants. Using the Kelvin-Voigt theory to model structural damping and incorporating size effects based on strain gradient theory, the model employs the parabolic shear deformation beam theory (PSDBT) to derive motion equations through Hamilton's principle. The differential quadrature method (DQM) is applied to solve these equations, accurately identifying the improvement in student understanding (ISU) of the beams. The impact of various parameters, including FGM properties, external voltage, geometric constants, and structural damping, on the DIR is thoroughly examined. The educational model is validated by comparing its outcomes with existing studies, highlighting the increase in ISU with the application of negative external voltage to the smart layer. This model serves as a valuable educational tool for engineering students and researchers studying the dynamic stability of advanced nanocomposite structures.

Experimental and theoretical analysis of electronic musical structures with smart nanoparticles

  • Jing Han;Maryam Shokravi;F. Ming
    • Structural Engineering and Mechanics
    • /
    • 제91권4호
    • /
    • pp.417-426
    • /
    • 2024
  • Nanotechnology has emerged as a promising avenue for enhancing musical structures. In this study, we analyze the static behavior of laser harp (i.e., electronic musical instrument) reinforced with Zinc Oxide (ZnO) nanoparticles. Leveraging the piezoelectric properties of ZnO nanoparticles, the structure is subjected to an electric field for intelligent control. The electronic musical structure is situated in a foundation with vertical springs and shear modulus constants. We employ the exponential Shear Deformation Beam Theory (ESDBT) to mathematically model the structure. A micro-electro-mechanical model is employed to determine the equivalent properties of the system. By utilizing nonlinear stress-strain relations, energy methods, and Hamilton's principle, we derive the motion equations. The buckling load of the electronic musical beam is calculated using the Difference Quadrature Method (DQM). The primary objective of this study is to present a mathematical model for electronic musical beams and determining the buckling load of the structure and to investigate the influence of nanotechnology and electric fields on its buckling behavior. The buckling is the case when the structure becomes deforms and unstable. Our findings reveal that the application of negative external voltage to the electronic musical structure increases both the stiffness and the buckling load of the musical system. Furthermore, reinforcing the electronic musical structure with ZnO nanoparticles results in an increased buckling load. Notably, the maximum enhancement in the 28-day compressive and tensile strengths of samples containing zinc oxide nanoparticles compared to the control sample resulting in increases of 18.70% and 3.77%, respectively.

Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells

  • R. Bina;M. Soltani Tehrani;A. Ahmadi;A. Ghanim Taki;R. Akbarian
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.487-499
    • /
    • 2024
  • The primary objective of this study is to analyze the free vibration behavior of a sandwich cylindrical shell with a defective core and wavy carbon nanotube (CNT)-enhanced face sheets, utilizing the three-dimensional theory of elasticity. The intricate equations of motion for the structure are solved semi-analytically using the generalized differential quadrature method. The shell structure consists of a damaged isotropic core and two external face sheets. The distributions of CNTs are either functionally graded (FG) or uniform across the thickness, with their mechanical properties determined through an extended rule of mixture. In this research, the conventional theory regarding the mechanical effectiveness of a matrix embedding finite-length fibers has been enhanced by introducing tube-to-tube random contact. This enhancement explicitly addresses the progressive reduction in the tubes' effective aspect ratio as the filler content increases. The study investigates the influence of a damaged matrix, CNT distribution, volume fraction, aspect ratio, and waviness on the free vibration characteristics of the sandwich cylindrical shell with wavy CNT-reinforced face sheets. Unlike two-dimensional theories such as classical and the first shear deformation plate theories, this inquiry is grounded in the three-dimensional theory of elasticity, which comprehensively accounts for transverse normal deformations.

Improve the stability of high resistance badminton net via reinforced light material: Development of industry and sport economy

  • Qiong Wu;Yi Sun;Wanxing Yin
    • Advances in nano research
    • /
    • 제17권2호
    • /
    • pp.167-179
    • /
    • 2024
  • This study investigates the stability and performance of high-resistance badminton nets through the integration of reinforced lightweight materials. By focusing on the structural and economic impacts, the research aims to enhance both the durability and practicality of badminton nets in professional and recreational settings. Using a combination of advanced material engineering techniques and economic analysis, we explore the development of nets constructed from innovative composites. These composites offer improved resistance to environmental factors, such as weather conditions, while maintaining lightweight properties for ease of installation and use. The study employs high-order shear deformation theory and high-order nonlocal theory to assess the mechanical behavior and stability of the nets. Partial differential equations derived from energy-based methodologies are solved using the Generalized Differential Quadrature Method (GDQM), providing detailed insights into the thermal buckling characteristics and overall performance. The findings demonstrate significant improvements in net stability and longevity, highlighting the potential for broader applications in both the sports equipment industry and related economic sectors. By bridging the gap between material science and practical implementation, this research contributes to the advancement of high-performance sports equipment and supports the growth of the sport economy.

동해에서 직접 수열 대역확산 수중음향통신 기법의 해상실험 결과 (Sea Trial Results of the Direct Sequence Spread Spectrum Underwater Acoustic Communication in the East Sea)

  • 한정우;김기만;윤영중;문현욱;천승용;손권
    • 한국음향학회지
    • /
    • 제31권7호
    • /
    • pp.441-448
    • /
    • 2012
  • 대역확산 기법은 인접 심벌간의 간섭을 최소화 하고, 은밀성(LPI, Low Probability of Intercept)과 다중 접속기능을 제공할 수 있다. 본 논문에서는 동해에서 직접수열 방식의 대역확산 기법으로 신호를 전송하고, 왜곡된 수신신호를 보상하기 위해 반송파와 시간 동기 복원 및 등화기를 적용한 결과를 나타낸다. 해상실험을 수행한 결과 송수신기사이의 거리가 3 km이었을 때 일반적인 QPSK(Quadrature Phase Shift Keying) 기법의 경우 $1.46{\times}10^{-2}$의 비트 오류율을 보였으며, 대역확산기법이 적용된 경우 $5.17{\times}10^{-4}$ 비트 오류율을 보였다.

Several systems for 1Giga bit Modem

  • Park, Jin-Sung;Kang, Seong-Ho;Eom, Ki-Whan;Sosuke, Onodera;Yoichi, Sato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1749-1753
    • /
    • 2003
  • We proposed several systems for 1Giga bit Modem. The first, Binary ASK(Amplitude Shift Keying) system has a high speed shutter transmitter and no IF(Intermediate Frequency) receiver only by symbol synchronization. The advantage of proposed system is that circuitry is very simple without IF process. The disadvantage of proposed system are that line spectrum occurs interference to other channels, and enhancement to 4-level system is impossible due to its large SNR degradation. The second, Binary phase modulation system has a high speed shutter transmitter and IF-VCO(IF-Voltage Controlled Oscillator) control by base-band phase rotation. Polarity of shutter window is changed by the binary data. The window should be narrow same as above ASK. The advantage of proposed system is which error rate performance is superior. The disadvantage of proposed system are that Circuitry is more complex, narrow pull-in range of receiver caused by VCO and spectrum divergence by the non-linear amplifier. The third, 4-QAM(Quadrature Amplitude Modulation)system has a nyquist pulse transmitter and IF-VCO control by symbol clock. The advantage of proposed system are that signal frequency band is a half of 1GHz, reliable pull-in of VCO and possibility of double speed transmission(2Gbps) by keeping 1GHz frequency-band. The disadvantage of proposed system are that circuit complexity of pulse shaping and spectrum divergence by the non-linear amplifier.

  • PDF

CLIP 기반의 한국형 합동전술데이터링크 체계 개발 (Development of Korean Joint Tactical Data Link System Based on CLIP)

  • 김승춘;이형근
    • 전기전자학회논문지
    • /
    • 제15권1호
    • /
    • pp.15-22
    • /
    • 2011
  • 한국군의 효과적인 합동작전 수행을 위한 감시 정찰 정보 및 공통상황인식의 필요하다. 실시간으로 합동전력간 전술정보를 공유하기 위한 한국형 합동전술데이터링크 체계는 기본형(1단계)에서 음성위주의 기존 무전기를 활용하여 필수 전술정보와 상황인식 공유를 제공한다. 완성형(2단계)은 기본형의 기술개발과 상용기술 성숙도를 고려하여 네트워크 중심의 전쟁수행이 가능한 합동데이터링크를 개발할 예정이다. 이는 연합작전 및 합동작전에 참가하는 전력들간에 효과적인 지휘통제를 제공하여 동시성 통합성의 전투력 발휘가 가능한 합동전장체계이다. 따라서 본 논문에서는 CLIP 기반의 공통 데이터 처리기의 성능이 구현된 한국형 합동전술데이터링크의 체계개발을 제시한다. 현재 개발중인 시스템의 시험 결과, QPSK 방식의 변조 신호를 사용한 경우 기존 무전기의 수신감도를 만족하여 시스템 구현시 적용 가능함을 확인할 수 있다.

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • 제21권1호
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.