• Title/Summary/Keyword: Quadratic equation

Search Result 537, Processing Time 0.023 seconds

Optimal Control of Stochastic Systems with Completely Observable Random Coefficients (가관측적인 랜덤 학수를 가진 스토캐스틱 시스템의 최적제어)

  • 이만형;황창선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.5
    • /
    • pp.173-178
    • /
    • 1985
  • The control of a linear system with random coefficients is discussed here. The cost function is of a quadratic form and the random coefficients are assumed to be completely observable by the controller. Stochastic Process involved in the problem by the controller. Stochastic Process involved in the problem formulation is presented to be the unique strong solution to the corresponding stochastic differential equations. Condition for the optimal control is represented through the existence of solution to a Cauchy problem for the given nonlinear partial differential equation. The optimal control is shown to be a linear function of the states and a nonlinear function of random parameters.

  • PDF

Analysis of Hydroelastic Response of a Pontoon-type Structure Considering Effect of Wave Breaker with Underwater Opening (해수순환 방파제를 고려한 폰툰형 구조물의 유탄성응답 해석)

  • 홍사영;최윤락;홍석원
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.53-59
    • /
    • 2003
  • Ocean space utilization using VLFS(Very Large Floating Structures) can provide environmental impact free space by allowing sea water flow freely through the floating structure. Use of Pontoon type VLFS for that purpose needs employment of breakwaters for reduction of wave effects. Therefore, in order to maximize advantage of environmental impact free structure, the breakwater should be the one that can allow water flow freely through it, too. In this paper hydroelastic response of a pontoon type structure is analyzed considering breakwaters which allow water flow through its opening at bottom of the breakwaters. Mode superposition technique is used for solving equation of flexible body while interactions between the pontoon and breakwaters is considered based on generalized mode concept. Bi-quadratic nine node higher-order boundary element method is adopted for more accurate numerical treatment near sharp edged body shape. Performance of various combinations of breakwaters is investigated.

Analysis of Random Ship Rolling Using Partial Stochastic Linearization (통계적 부분선형화 방법을 이용한 선체의 불규칙 횡동요 운동의 해석)

  • Dong-Soo Kim;Won-Kyoung Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.37-41
    • /
    • 1995
  • In order to analyze the rolling motion of a ship in random beam waves we use the partial stochastic linearization method. The quadratic damping and the nonlinear restoring moments given by the odd polynomials up to the 11th order are added to a single degree of freedom linear equation of roll motion. The irregular excitation moment is assumed to be the Gaussian white noise. The statistical characteristics of the response by the partial stochastic linearization method is compared with results by the equivalent linearization method and Monte Carlo simulation. It is fecund that the partial stochastic linearization method is not necessarily superior to the equivalent linearization method.

  • PDF

Active Vibration Control of Smart Hull Structures (지능형 Hull구조물의 능동 진동제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok;Kim, Heung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.192-195
    • /
    • 2005
  • In this study, dynamic characteristics of an end-capped hull structure with surface bonded piezoelectric actuators are studied. Finite element modeling is used to obtain practical governing equation of motion and boundary conditions of smart hull structure. Modal analysis is conducted to investigate the dynamic characteristics of the hull structure. Piezoelectric actuators are attached where the maximum control performance can be obtained. Active controller based on Linear Quadratic Gaussian (LQG) theory is designed to suppress vibration of smart hull structure. It is observed that closed loop damping can be improved with suitable weighting factors in the developed LQG controller.

  • PDF

$F_N$-Based Nodal Transport Method in X-Y Geometry

  • Hong, Ser-Gi;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.39-44
    • /
    • 1996
  • A nodal transport method based on the F$_{N}$ method is developed for the transport calculation in x- y geometry and tested for benchmark problems. Using transverse integration, the two-dimensional transport equation is converted to one-dimensional equations for x, y-directions and the one-dimensional equations are integrated over azimuthal angle. With proper approximations for the transverse leakage, the one-dimensional equations are discretized by using the F$_{N}$ method without truncation error. At present, isotropic approximation of the transverse with a quadratic or flat shape in spatial variable is tested.ted.

  • PDF

Restricted Bayesian Optimal Designs in Turning Point Problem

  • Seo, Han-Son
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.1
    • /
    • pp.163-178
    • /
    • 2001
  • We consider the experimental design problem of selecting values of design variables x for observation of a response y that depends on x and on model parameters $\theta$. The form of the dependence may be quite general, including all linear and nonlinear modeling situations. The goal of the design selection is to efficiently estimate functions of $\theta$. Three new criteria for selecting design points x are presented. The criteria generalized the usual Bayesian optimal design criteria to situations n which the prior distribution for $\theta$ amy be uncertain. We assume that there are several possible prior distributions,. The new criteria are applied to the nonlinear problem of designing to estimate the turning point of a quadratic equation. We give both analytic and computational results illustrating the robustness of the optimal designs based on the new criteria.

  • PDF

AERODYNAMIC OPTIMIZATION OF SUPERSONIC WING-NACELLE CONFIGURATION USING AN UNSTRUCTURED ADJOINT METHOD

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.60-65
    • /
    • 2000
  • An aerodynamic design method has been developed by using a three-dimensional unstructured Euler code and an adjoint code with a discrete approach. The resulting adjoint code is applied to a wing design problem of super-sonic transport with a wing-body-nacelle configuration. Hicks-Henne shape functions are adopted far the surface geometry perturbation, and the elliptic equation method is employed fer the interior grid modification during the design process. Interior grid sensitivities are neglected except those for design parameters associated with nacelle translation. The Sequential Quadratic Programming method is used to minimize the drag with constraints on the lift and airfoil thickness. Successful design results confirm validity and efficiency of the present design method.

  • PDF

Shape Optimization of a Micro-Channel Using Kriging Model (크리깅 모델을 이용한 미세유로의 형상최적설계)

  • Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.733-740
    • /
    • 2007
  • Microchannel heat sink shape optimization is performed using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

A Study on the Actively Controlled Aerostatic Journal Bearing using Cylindrical Capacitance Displacement Sensor (원통형 변위센서를 장착한 능동 공기 베어링에 관한 연구)

  • Park, Sang-Shin;Kim, Gyu-Ha
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • In this paper, an actively controlled aerostatic bearing is studied to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled aerostatic bearing is composed of aerostatic bearings, non-contact type of displacement sensors, piezoelectric actuators and controllers. The cylindrical capacitance sensor (CCS) is used as the displacement sensor. The reason for using CCS instead of the commercial gap sensor is that it can give us the pure error motion of the spindle because it removes the roundness error or the geometric errors in the spindle. The controller is designed by the state space equation and quadratic optimal control theory. The characteristic data of the actively controlled aerostatic bearing system in the frequency domain are presented and the stiffness and damping coefficients of the bearing are mentioned. This paper shows the possibility to reduce the motion error up to 6000 rpm.

Control of a 3-DOF vertical articulated robotic system using nonlinear transformation control (비선형 변환제어에 의한 3자유도 수직 다관절 로봇의 제어)

  • Yang, Chang-Il;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1809-1818
    • /
    • 1997
  • Mathematical models of industrial robots or manipulators are highly nonlinear equations with nonlinear coupling between the variables of motion. As the working speed has been fast, the effects of nonlinear terms have become serious. So the control algorithm based on approximately linearized equation looses the efficiency. In order to design the control law for the nonlinear models, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory in this study. Nonlinear terms of the system are eliminated and coupled terms are decoupled by this feedback law. This method is applied to a 3-D.O.F. vertical articulated manipulator by both experiments and simulations and compared with PID control which is widely used in the industry.