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Abstract

A nodal transport method based on the Fn method is developed for the transport
calculation in x—y geometry and tested for benchmark problems. Using transverse
integration, the two-dimensional transport equation is converted to one-dimensional
equations for x, y-directions and the one-dimensional equations are integrated over
azimuthal angle. With proper approximations for the transverse leakage, the
one—dimensional equations are discretized by using the Fn method without truncation error.
At present, isotropic approximation of the transverse with a quadratic or flat shape in
spatial variable is tested.

1. Introduction

In the last few years, considerable progress has been made in the development of a
certain class of nodal coarse-mesh methods in the transport theory. However, currently
known nodal transport methods are not as acuurate for transport problems as diffusion
nodal methods are for diffusion problems. This is because the one-dimensional transverse
integrated diffusion equations are solved analytically using an approximation only for the
transverse leakage terms, whereas the one-dimensional transverse integrated transport
equations are solved analytically using approximations for the transverse leakage and the
scattering source term.

The Fn method was first developed by Siewert and Benoist'? and used to obtain
concise and accurate results for the half space and the finite slab. The derivation of the
Fn method starts with an equation that gives the analytic solution in terms of the infinite
medium Green’s function in infinite medium slab geometry and the infinite medium
Green’s funtion is represented by Case's bases’. The equation for the infinite medium is
transformed to the equation for the finite slab by using Placzek lemma and projected onto
Case’s bases. The resulting equations are two singular integral equations in which the
interface angular fluxes are unknowns. In the Fn method, the interface angular fluxes are
expanded by polynomial basis. Therefore, the Fx method has no truncation error in spatial
variable in slab geometry.

In this paper, an interface cwrrent nodal method is developed by using the
well-known transverse integration procedure“'5 and by solving the one-dimensional
equations with the Fx method, only approximating (in spatial variables) the transverse
leakage; the scattering source terms in the one-dimensional equations are treated implictly
and exactly (in spatial variable). At present, isotropic approximation of the transverse with
a quadratic shape in spatial variable is used. With those approximations of the transverse
leakage, the polynomial expansion of the interface angular flux leads to a response matrix
equation for one node. A one node block inversion method was used to solve the nodal
equation. Numerical tests show that our method gives accurate solution in comparison to
other methods.



II. Theory and Methodology

The starting point is the one-group transport equation with isotropic scattering and
isotropic sources in x—y geometry
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where S is the inhomogeneous source and o is the total scattering cross section. Eq.(1)

is transformed into two one-dimensional equations by the transverse integration procedure
and the equations are integrated over azimuthal angle. The equation for x-direction is

given by
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where the transverse leakage and the x-direction angular flux are given by
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At present, the dependency of the transverse leakage on the azimuthal angle is
ignored and the spatial distribution is assumed to be a quadratic shape
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where the quadratic shape function po(x) is the shape function in the analytic nodal
method(ANM). For the nodal coupling equations, Eq.(2) and the counterpart for y-direction
are discretized by the Fn method :
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where the Case’s eigenfunction of the transport equation is given by
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and in Eq.(6), Pv represents the Cauchy principal value. Then, the interface angular fluxes
in Eq.(5) are expanded by a polynomial. For example, incoming flux in left side is
expanded as follows :
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By substituting the above expanded interface angular fluxes into Eq.(5), the following
nodal coupling equations are obtained :
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where the coefficients A,, B, are given as follows :
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and A%, B}, Ci are functions of (ij)'th node average transverse leakage, (i-1j)’th node

average transverse leakage, and (i+1j)'th node average transverse leakage. Since the
transverse leakages are related with the interface currents, the equation of relating the
interface currents with the nodal unknowns is required. The equation is obtained with the
definition of the interface current :

1 ! x
VTS =7f_1 dppd™(x;1p2, 1)

1 1
=1 f dmu/”‘(xm/z,ﬂ)—% f dupd(xis 12, — 1) (10)
1 i $iinie )

2 a= at+2 2 a= at?2

Substituting Eq.(10) into Eq.(8), the derivation of the nodal coupling equations is
completed and the equation can be written in the following vector form for one node :
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AT™=BF"+R, (11)

where R includes the inhomogeneous sources and the interface nodal unknowns of
adjacent nodes, and the matrices A, B are given as follows :

a=[4 4] =[5 4. (12)
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The above nodal coupling equation 'is solved by a one node block inversion method.
In the one node block inversion method, first, all incoming fluxes for each node are
assumed to be known and then Eq.(11) for each node are directly inverted by Gaussian
elimination. Our experience indicates that the spectral radius of this iteration method is
smaller than that of the scattering source iteration method.

III. Applications and Numerical Results

For verification of the Fnx nodal method, two benchmark problems are chosen. The
first benchmark problem is showin in Fig. 1. This problem is selected from Ref. 6 and
solved with three types of mesh divisions (4x4, 10x10, 20x20). The converged solution
with a pointwise relative convergence criterion of 10E-4 is used to calculate the
quadrant-averaged scalar fluxes and the average scalar flux for the detector region. To
compare our results, the results from Ref. 6 are used. In Ref. 6, the linear nodal (LN)
method, the linear-linear (LL) nodal method, and the bilinear (BL) method are tested with
S4 angular quadrature set and with the same convergence criterion as ours. Fi is used in
this problem. The results of the TWODANT code’ with a fine mesh division (100x100) are
also compared. The results are summarized in Table I. In comparison with the results of
the TWODANT code, the results show that our method gives more accurate solutions
than the three nodal methods in Ref. 6 for the region I, II and the detector region, but the
solutions of the three nodal methods are more accurate than that of our method for the
region IV. It is also noted that the results with flat shape of the transverse leakage are
comparable to those with quadratic shape of the transverse leakage and that the number
of calculated negative fluxes for our method is fewer than those for the three nodal

methods in Ref. 6.

Table I Comparison of the numerical solutions for benchmark problem I

Mesh | Method I I v Detector | penmtme o o
xd Fi(flat) 16879E+00 | 0.4013E-01 |0.1062E-02 0
Fi(quadratic)| 1.6840E+00 | 0.4104E-01 |0.1871E-02 3
Fi(flat) | 1.6861E+00 0.4051E-01 |0.1580E-02| 0.2024E+00 0
Fi(quadratic)| 1.6847E+00 0.4090E-01 |0.1171E-02| 0.2025E+00 1
10x10 LN 1.676E+00 0.4170E-01  {0.1986E-02| 0.2151E+00 8
LL 1.676E+00 04170E-01  |0.1989E-02| 0.2151E+00 6
BL 1.676E+00 0.4170E-01  |0.1996E-02| 0.2151E+00 6
Fiflat) | 1.6854E+00 0.4071E-01 |0.1389E-02] 0.2024E+00 0
Fi(quadratic)| 1.6848E+00 0.4087E-01 |0.1199E-02| 0.2025E+00 0
20%20 LN 1.676E+00 04161E-01  (0.1990E-02| 0.2145E+00 16
LL 1.676E+00 0.4161E-01 |0.1991E-02| 0.2145E+00 18
BL 1.676E+00 0.4160E-01  {0.1992E-02] 0.2145E+00 18
TWODANT 1.6852E+00 | 0.4056E-01  [0.1739E-02| 0.2054E+00
(100x100,S4)

Benchmark problem II is devised to numerically analyze the effects of the shapes of
the transverse leakage. Since all the boundary conditions are vacuum, the leakages through
the external boundaries are very important. The defintion of the benchmark problem is
described in Fig. 2. The results are given in Table II. In this calculation, the result of the
TWODANT code with fine mesh division (100x100) is used as reference solution and F3 is
used in our method. Our results for flat and quadratic shape of the transverse leakage are
very accurate except in the two nodes that are located in top corners. It is also noted that
the errors in source regions are nearly equal to zero.



Table II Absolute relative errors(%) for benchmark problem II

1.5054(a) 2.6886 2.4269 1.2727 0.3186
5.626(b) 1.190 1.989 0.887 6.001
2.152(c) 0.402 0.688 0.369 2.096
2.809(d) 0.866 0.614 1.257 2.325
1.302(e) 0.412 0.486 0.345 1.262

14.306 19.282 17.809 7.3608

1.418 0.108 0.819 0.384

0.768 0.021 0.348 0.059

1.712 0.176 0.348 1.643

0.803 0.041 0.269 0.516

46.869 49.381 48.661

0.064 0.002 0.022

0.029 0.002 0.008

0.015 0.002 0.002

0.015 0.000 0.006

47608 50.000

0.002 0.000

0.002 0.000

0.004 0.000

0.002 0.000

45397

0.057

0.039

0.024

0.019

(a) reference flux : TWODANT (Sy), 100x100 mesh division
(b) with flat transverse shape and 10x10 mesh division
{c) with flat transverse shape and 15x15 mesh division
(d) with quadratic transverse shape and 10x10 mesh division
(e) with quadratic transverse shape and 15x15 mesh division

IV. Conclusions and Discussion

In this paper, a nodal transport method based on the Fy method is developed for the
transport calculation in x—y geometry and tested for benchmark problems. For
verification of our method, the results are compared with other methods. The transverse
integration procedure is used to derive the one-dimensional equations and the equations
are integrated over the azimuthal angle. The nodal coupling equations are derived by
solving the one—dimensional equations with the Fx method that has no truncation error for
spatial variable in slab geometry. The numerical results show that our method gives
accurate solutions except in the external regions. It is considered that the larger error in
the outside regions is due to the assumption of the isotropic transverse leakage. The
extension to the three-dimensional geometry is straightforward. We plan to study the
extensions of the Fn nodal method to the multigroup, eigenvalue problem and anisotropicity
of the transverse leakage in the future.
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Fig. 1. Geometry and cross sections for the benchmark problem I
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Fig. 2. Geometry and cross sections for the benchmark problem II



