• Title/Summary/Keyword: Quadratic equation

Search Result 537, Processing Time 0.024 seconds

SEVERAL STABILITY PROBLEMS OF A QUADRATIC FUNCTIONAL EQUATION

  • Cho, In-Goo;Koh, Hee-Jeong
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.99-113
    • /
    • 2011
  • In this paper, we investigate the stability using shadowing property in Abelian metric group and the generalized Hyers-Ulam-Rassias stability in Banach spaces of a quadratic functional equation, $f(x_1+x_2+x_3+x_4)+f(-x_1+x_2-x_3+x_4)+f(-x_1+x_2+x_3)+f(-x_2+x_3+x_4)+f(-x_3+x_4+x_1)+f(-x_4+x_1+x_2)=5{\sum\limits_{i=1}^4}f(x_i)$. Also, we study the stability using the alternative fixed point theory of the functional equation in Banach spaces.

A FIXED POINT APPROACH TO THE STABILITY OF QUADRATIC FUNCTIONAL EQUATION

  • Jung, Soon-Mo;Kim, Tae-Soo;Lee, Ki-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.531-541
    • /
    • 2006
  • [ $C\u{a}dariu$ ] and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we adopt the idea of $C\u{a}dariu$ and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation for a large class of functions from a vector space into a complete ${\gamma}-normed$ space.

LOCAL CONVERGENCE OF FUNCTIONAL ITERATIONS FOR SOLVING A QUADRATIC MATRIX EQUATION

  • Kim, Hyun-Min;Kim, Young-Jin;Seo, Jong-Hyeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.199-214
    • /
    • 2017
  • We consider fixed-point iterations constructed by simple transforming from a quadratic matrix equation to equivalent fixed-point equations and assume that the iterations are well-defined at some solutions. In that case, we suggest real valued functions. These functions provide radii at the solution, which guarantee the local convergence and the uniqueness of the solutions. Moreover, these radii obtained by simple calculations of some constants. We get the constants by arbitrary matrix norm for coefficient matrices and solution. In numerical experiments, the examples show that the functions give suitable boundaries which guarantee the local convergence and the uniqueness of the solutions for the given equations.

Stability of a Generalized Quadratic Type Functional Equation (일반화된 2차형 범함수 방정식의 안정성)

  • Kim, Mi-Hye;Hwang, In-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.4
    • /
    • pp.93-98
    • /
    • 2002
  • Functional equations are useful in the experimental science because they play very important role for researchers to formulate mathematical models in general terms, through some not very restrictive equations that only stipulate basic properties of functions showing in these equations, without postulating the exact forms of such functions. Of lots of such functional equations, in this paper we adopt and solve some generalized quadratic functional equation a$^2$f((x+y/a))+b$^2$f((x-y/b)) = 2f(x)+2f(y)

  • PDF

ORTHOGONALLY ADDITIVE AND ORTHOGONALLY QUADRATIC FUNCTIONAL EQUATION

  • Lee, Jung Rye;Lee, Sung Jin;Park, Choonkil
    • Korean Journal of Mathematics
    • /
    • v.21 no.1
    • /
    • pp.1-21
    • /
    • 2013
  • Using the fixed point method, we prove the Ulam-Hyers stability of the orthogonally additive and orthogonally quadratic functional equation $$f(\frac{x}{2}+y)+f(\frac{x}{2}-y)+f(\frac{x}{2}+z)+f(\frac{x}{2}-z)=\frac{3}{2}f(x)-\frac{1}{2}f(-x)+f(y)+f(-y)+f(z)+f(-z)$$ (0.1) for all $x$, $y$, $z$ with $x{\bot}y$, in orthogonality Banach spaces and in non-Archimedean orthogonality Banach spaces.

AN EXPLICIT FORM OF POWERS OF A $2{\times}2$ MATRIX USING A RECURSIVE SEQUENCE

  • Kim, Daniel;Ryoo, Sangwoo;Kim, Taesoo;SunWoo, Hasik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The purpose of this paper is to derive powers $A^{n}$ using a system of recursive sequences for a given $2{\times}2$ matrix A. Introducing a recursive sequence we have a quadratic equation. Solutions to this quadratic equation are related with eigenvalues of A. By solving this quadratic equation we can easily obtain an explicit form of $A^{n}$. Our method holds when A is defined not only on the real field but also on the complex field.

ON THE FUZZY STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

  • Lee, Jung-Rye;Jang, Sun-Young;Shin, Dong-Yun
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.65-80
    • /
    • 2010
  • In [17, 18], the fuzzy stability problems for the Cauchy additive functional equation and the Jensen additive functional equation in fuzzy Banach spaces have been investigated. In this paper, we prove the generalized Hyers-Ulam stability of the following quadratic functional equations in fuzzy Banach spaces: (0.1) f(x + y) + f(x - y) = 2f(x) + 2f(y), (0.2) f(ax + by) + f(ax - by) = $2a^2 f(x)\;+\;2b^2f(y)$ for nonzero real numbers a, b with $a\;{\neq}\;{\pm}1$.

Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD

  • Park, Ho Jin;Lee, Dong Hyuk;Jeon, Byoung Kyu;Shim, Hyung Jin
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1043-1050
    • /
    • 2018
  • For an efficient Monte Carlo (MC) burnup analysis, an accurate high-order depletion scheme to consider the nonlinear flux variation in a coarse burnup-step interval is crucial accompanied with an accurate depletion equation solver. In a Seoul National University MC code, McCARD, the high-order depletion schemes of the quadratic depletion method (QDM) and the linear extrapolation/quadratic interpolation (LEQI) method and a depletion equation solver by the Chebyshev rational approximation method (CRAM) have been newly implemented in addition to the existing constant extrapolation/backward extrapolation (CEBE) method using the matrix exponential method (MEM) solver with substeps. In this paper, the quadratic extrapolation/quadratic interpolation (QEQI) method is proposed as a new high-order depletion scheme. In order to examine the effectiveness of the newly-implemented depletion modules in McCARD, four problems in the VERA depletion benchmarks are solved by CEBE/MEM, CEBE/CRAM, LEQI/MEM, QEQI/MEM, and QDM for gadolinium isotopes. From the comparisons, it is shown that the QEQI/MEM predicts ${k_{inf}}^{\prime}s$ most accurately among the test cases. In addition, statistical uncertainty propagation analyses for a VERA pin cell problem are conducted by the sensitivity and uncertainty and the stochastic sampling methods.

Quadratic Parabolic Equation to Estimate the Vertical Velocity Distribution in the Natural Streamflow (자연하천의 연직방향 유속분포 추정을 위한 포물선식)

  • Park, Seung-Gi;Kim, Tae-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.169-179
    • /
    • 2000
  • The study was carried out to investigate the characteristics of vertical velocity distribution measured by current meter at Kangkyung station in Keum river during the period of 1995 to 1997. It suggests the quadratic parabola equation to estimate the vertical velocity profile only from the measurement data of surface velocity. The equation was found to be statistically very stable and showed high significance to express the surface velocity and bottom velocity. The vertical velocity profile was detennined by the relationships to the surface velocity, and a coefficient of the quadratic parabolic equation. The equation was verified to the reserved survey data, and the results were confirmed to be good for the estimation of the characteristics of the vertical velocity distribution. The vertical velocity profile can be applied to calculating the mean velocity and discharge, and to analyse the dispersion of pollutant materials in the streamflow.

  • PDF

CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A CLASS OF QUADRATIC MATRIX EQUATIONS

  • Kim, Hyun-Min
    • Honam Mathematical Journal
    • /
    • v.30 no.2
    • /
    • pp.399-409
    • /
    • 2008
  • We consider the most generalized quadratic matrix equation, Q(X) = $A_7XA_6XA_5+A_4XA_3+A_2XA_1+A_0=0$, where X is m ${\times}$ n, $A_7$, $A_4$ and $A_2$ are p ${\times}$ m, $A_6$ is n ${\times}$ m, $A_5$, $A_3$ and $A_l$ are n ${\times}$ q and $A_0$ is p ${\times}$ q matrices with complex elements. The convergence of Newton's method for solving some different types of quadratic matrix equations are considered and we show that the elementwise minimal positive solvents can be found by Newton's method with the zero starting matrices. We finally give numerical results.