DOI QR코드

DOI QR Code

CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A CLASS OF QUADRATIC MATRIX EQUATIONS

  • Kim, Hyun-Min (Department of Mathematics, Pusan National University)
  • Received : 2008.04.24
  • Accepted : 2008.04.30
  • Published : 2008.06.25

Abstract

We consider the most generalized quadratic matrix equation, Q(X) = $A_7XA_6XA_5+A_4XA_3+A_2XA_1+A_0=0$, where X is m ${\times}$ n, $A_7$, $A_4$ and $A_2$ are p ${\times}$ m, $A_6$ is n ${\times}$ m, $A_5$, $A_3$ and $A_l$ are n ${\times}$ q and $A_0$ is p ${\times}$ q matrices with complex elements. The convergence of Newton's method for solving some different types of quadratic matrix equations are considered and we show that the elementwise minimal positive solvents can be found by Newton's method with the zero starting matrices. We finally give numerical results.

Keywords

References

  1. Peter Benner and Ralph Byers, An exact line search method for solving generalized continuous-time algebraic Riccati equations, IEEE Trans. Automat. Control. 43 (1998), 101-107. https://doi.org/10.1109/9.654908
  2. Abraham Berman and Robert J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1994.
  3. George J. Davis, Numerical solution of a quadratic matrix equation, SIAM J. Sci. Stat. Comput. 2 (1981), 164-175. https://doi.org/10.1137/0902014
  4. George J. Davis, Algorithm 598: An algorithm to compute solvents of the matrix equation $AX^2$ + BX + C = 0, ACM Trans. Math. Software 9 (1983), 246-254. https://doi.org/10.1145/357456.357463
  5. J. E. Dennis, Jr., J. F. Traub, and R. P. Weber, The algebraic theory of matrix polynomials, SIAM J. Numer. Anal. 13 (1976), 831-845. https://doi.org/10.1137/0713065
  6. M. Fiedler and V. Ptak, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J. 12 (1962), 382-400. https://doi.org/10.1007/BF01696240
  7. Chun-Hua Guo, Newton's method for discrete algebraic Riccati equation when the closed-loop matrix has eigenvalues on the unit circle, SIAM J. Matrix Anal. Appl. 20 (1998), 279-294. https://doi.org/10.1137/S0895479897322999
  8. Chun-Hua Guo and Peter Lancaster, Analysis and modification of Newton's method for algebraic Riccati equations, Math. Comp. 67 (1998), 1089-1105. https://doi.org/10.1090/S0025-5718-98-00947-8
  9. Chun-Hua Guo and Alan J. Laub, On the iterative solution of a class of non-symmetric algebraic Riccati equations, SIAM J. Matrix Anal. Appl. 22 (2000), 376-391. https://doi.org/10.1137/S089547989834980X
  10. Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.
  11. Nicholas J. Higham and Hyun-Min Kim, Numerical analysis of a quadratic matrix equation, IMA J. Numer. Anal. 20 (2000), 499-519. https://doi.org/10.1093/imanum/20.4.499
  12. Nicholas J. Higham and Hyun-Min Kim, Solving a quadratic matrix equation by Newton's method with exact line searches, SIAM J. Matrix Anal. Appl. 23 (2001), 303-316. https://doi.org/10.1137/S0895479899350976
  13. Roger A. Horn and Charles R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1994.
  14. Peter Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, Oxford, 1966.
  15. Peter Lancaster and Leiba Rodman, Algebraic Riccati Equations, Oxford University Press, (1995).
  16. Guy Latouche, Newton's iteration for non-linear equations in Markov chains, IMA J. Numer. Anal. 14 (1994), 583-598. https://doi.org/10.1093/imanum/14.4.583
  17. J. A. Meijerink and H. A. Van Der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp. 31 (1977), 148-162.
  18. H. A. Smith, R. K. Singh, and D. C. Sorensen, Formulation and solution of the non-linear, damped eigenvalue problem for skeletal systems, Int. J. Numer. Methods Eng. 38 (1995), 3071-3085. https://doi.org/10.1002/nme.1620381805
  19. Francoise Tisseur and Karl Meerbergen, The quadratic eigenvalue problem, SIAM Review 43 (2001), 235-286. https://doi.org/10.1137/S0036144500381988
  20. Z. C. Zheng, G. X. Ren, and W. J. Wang. A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics, Journal of Sound and Vibration 199 (1997), 253-268. https://doi.org/10.1006/jsvi.1996.0621

Cited by

  1. CONVERGENCE OF NEWTON'S METHOD FOR SOLVING A NONLINEAR MATRIX EQUATION vol.32, pp.1, 2016, https://doi.org/10.7858/eamj.2016.002
  2. Condition Numbers and Backward Error of a Matrix Polynomial Equation Arising in Stochastic Models 2018, https://doi.org/10.1007/s10915-018-0641-x
  3. Convergence of pure and relaxed Newton methods for solving a matrix polynomial equation arising in stochastic models vol.440, 2014, https://doi.org/10.1016/j.laa.2013.10.043
  4. NEWTON'S METHOD FOR SYMMETRIC AND BISYMMETRIC SOLVENTS OF THE NONLINEAR MATRIX EQUATIONS vol.50, pp.4, 2013, https://doi.org/10.4134/JKMS.2013.50.4.755