• Title/Summary/Keyword: QuEChERS

Search Result 80, Processing Time 0.034 seconds

Analysis of Agrochemical Residues in Tobacco Using QuEChERS Method by GC-MS/MS

  • Lee, Jeong-Min;Jang, Gi-Chul;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 2007
  • This study was performed to apply the more rapid and accurate sample preparation, and the high selectivity and sensitivity of the analyte detection by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). QuEChERS (quick, easy, cheap, effective, rugged and safe) method was validated for 49 agrochemicals in the CORESTA Agrochemical Advisory Committee guide and amenable to GC-MS/MS determination. In QuEChERS method, the effects of sorbents (PSA, $C_{18}$ and GCB) and matrix of the analytes in tobacco types (flue-cured, burley and oriental) were investigated. MS/MS acquisition provided high specificity and selectivity for agrochemicals and low limit of quantification. QuEChERS by using PSA alone and the matrix-matched standards gave good recoveries and RSD values in three types of tobaccos. QuEChERS method was no needed to be complex clean-up procedure and would be used as the fast and easy method for agrochemical residue analysis in tobacco.

Comparison of QuEChERS and Solid Phase Extraction for Accurate Determination of Pesticide Residues in Kimchi Cabbage and Strawberry using Isotope Dilution Mass Spectrometry

  • Seonghee Ahn;Kebede Gebeyehu Mekete;Byungjoo Kim
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.178-185
    • /
    • 2023
  • QuEChERS is used worldwide as a universal sample preparation method with many benefits, such as being quick, easy, cheap, effective, rugged and safe. This study examined whether QuEChERS can be employed in isotope dilution mass spectrometry (ID-MS) for accurate analysis of pesticides in food. The ratios of fortified values and measured values of malathion and fenitrothion using the QuEChERS method were compared with those using the solid phase extract (SPE) method which was previously used in this laboratory. The separations of the two pesticides on DB-5MS and VF-1701MS columns were compared. Malathion and fenitrothion were fortified into kimchi cabbage and pretreated with the QuEChERS method and the SPE method. The results obtained using the DB-5MS column varied according to the sample preparation method, column and pesticide level. Using the VF-1701 column, ratios were 98-102% by both QuEChERS and Carb/NH2 SPE method for all fortification level. Malathion and fenitrothion were fortified into strawberry samples for comparison with kimchi cabbage. The results for the strawberry samples indicated that the ratios were not influenced by the sample preparation methods or GC column. The QuEChERS method could be acceptable in the ID-MS method for pesticide residue analysis in food, however other conditions should be carefully considered for accurate determination, such as the column, amount of analyte and food matrix.

Modified QuEChERS Multi-Residue Analysis Method for 61 pesticides in Fruits using with HPLC and GC-ECD/NPD (HPLC 및 GC-ECD/NPD를 이용한 과일 중 61종 농약의 QuEChERS 전처리 다성분 분석법 개발)

  • Lee, Ju-Young;Hong, Su-Myeong;Kim, Taek-Kyum;Min, Zaw Win;Kim, Yang-Hyeon;Song, Kyung-Ae;Kwon, Hye-Yong;Lee, Hee-Dong;Im, Geon-Jae;Kim, Doo-Ho;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.3
    • /
    • pp.242-256
    • /
    • 2012
  • QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method has been a lot of research for pesticide analysis, because it is very simple and fast. However, this method requires high sensitivity instrument such as LC-MS/MS because of the use of small sample volume and many impurities compared to the conventional method. So, QuEChERS method needs to be modified for using with HPLC and GC-ECD/NPD. The aim of this work was to study the application of the QuEChERS method as well as its modification for the extraction and preconcentration of 5 groups of 61 pesticides from 4 fruits prior to their determination by HPLC-PDA, GC-ECD/NPD, and LC-MS/MS. The method was validated using spiking levels at 0.1 mg/kg (or 0.01 mg/kg) in apple, grapes, pear and persimmon. The average recovery by QuEChERS AOAC Official 2007. 01 version using the LC-MS/MS varied from 71.1127.4% for 61 pesticides. The average recovery rates using modified QuEChERS varied from 70.9~126% for 61 pesticides by HPLC-PDA and GC-ECD/NPD. The results satisfied the criteria of multiple pesticide residue analysis, setting 70~130% for recovery rates and below 30% for CV.

Multiresidue Analysis of 240 Pesticides in Apple and Lettuce by QuEChERS Sample Preparation and HPLC-MS/MS Analysis (QuEChERS 전처리법과 HPLC-MS/MS 기기분석을 이용한 사과와 상추 중 240종 농약의 동시분석)

  • Kwon, Hye-Young;Kim, Chan-Sub;Park, Byung-Jun;Jin, Yong-Duk;Son, Kyung-Ae;Hong, Su-Myeong;Lee, Je-Bong;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.417-433
    • /
    • 2011
  • The study tested QuEChERS (quick, easy, cheap, effective, rugged and safe) sample preparation and HPLC-MS/ MS analysis for measurement of pesticide residues in fruit and vegetable. 240 kinds of pesticides spiked at three levels of 90, 45, 9 ng/g in lettuce and apple. For QuEChERS sample preparation, graphitized carbon black (GCB) was used for only lettuce in dispersive-SPE as absorbent. Matrix-matched standard calibration was used for quantitative analysis of HPLC-MS/MS. 218 pesticides (91%) in apple and 207 pesticides (86%) in lettuce showed recoveries in the range of 70~120% with $RSD{\leq}20%$. The lowest calibrated level (LCL) were 4.5 ng/g for 192 pesticides, 9 ng/g for 42 pesticides, 45 ng/g for 3 pesticides and 3 pesticides were not detected at all concentration levels. The results showed that the QuEChERS sample preparation and HPLC-MS/MS analysis can be applied to multi-residue analysis of pesticides in vegetables and fruits.

Analysis of Hypoxia-Inducible Factor Stabilizers by a Modified QuEChERS Extraction for Antidoping Analysis

  • Kim, Si Hyun;Lim, Nu Ri;Min, Hophil;Sung, Changmin;Oh, Han Bin;Kim, Ki Hun
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.118-124
    • /
    • 2020
  • An analytical method was developed for hypoxia-inducible factor (HIF) stabilizers based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) sample preparation and liquid chromatography-high resolution mass spectrometry analysis. HIF stabilizers potentially enhance the performance of athletes, and hence, they have been prohibited. However, the analysis of urinary HIF stabilizers is not easy owing to their unique structure and characteristics. Hence, we developed the QuEChERS preparation technique for a complementary method and optimized the pH, volume of extraction solvent, and number of extractions. We found that double extraction with 1% of formic acid in acetonitrile provided the highest recovery of HIF stabilizers. Moreover, the composition of the mobile phase was also optimized for better separation of molidustat and IOX4. The developed method was validated in terms of its precision, detection limit, matrix effect, and recovery for ISO accreditation. To the best of our knowledge, this is the first demonstration of the application of the QuEChERS method, which is suitable as a complementary analytical method, in antidoping.

Multiresidue Analysis of 124 Pesticides in Soils with QuEChERS extraction and LC-MS/MS (QuEChERS 및 LC-MS/MS를 이용한 토양 중 124종 잔류농약다성분 분석법)

  • Gwon, Ji-Hyeong;Kim, Taek-Kyum;Seo, Eun-Kyung;Hong, Su-Myeong;Kwon, Hye-Yong;Kyung, Ki-Sung;Kim, Jang-Eok;Cho, Nam-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.296-313
    • /
    • 2014
  • A QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) multiresidue method was developed for the simultaneous analysis of 124 pesticides in soil by LC-MS. The procedure involved liquid extraction of soil immersed with 0.2N $NH_4Cl$ by acetonitrile with 1% acetic acid, followed by anhydrous $MgSO_4$ and sodium acetate, and dispersive SPE cleanup with $MgSO_4$, primary secondary amine (PSA) and $C_{18}$. The extracts were analyzed with LC-MS/MS in ESI positive mode. Standard calibration curves were made by matrix matched standards and their correlation coefficients were higher than 0.99. Recovery studies for the validation were carried out using two type soils, loam and sandy loam, at four concentration levels (0.005, 0.01, 0.02, and 0.1 mg/kg). The recoveries of pesticides were in the range of 70-120% with < 20% RSD except 4 pesticides, Benfuracarb, Ethiofencarb, Pymetrozine, and Pyrethrin. This result indicated that the method using QuEChERS and LC-MS/MS could be applied for the simultaneous determination of pesticide residues in soils.

Comparison between the liquid-liquid partition method and modified QuEChERS method for the analysis of pesticide residues in beef fat (소지방 중 잔류농약분석을 위한 액-액분배법과 modified QuEChERS법 비교)

  • Kim, Yoen-Joo;Choi, Yoon-Hwa;Shin, Bang-Woo;Lee, Jung-Hark
    • Korean Journal of Veterinary Service
    • /
    • v.34 no.4
    • /
    • pp.429-439
    • /
    • 2011
  • This article described the comparison of a quick, easy, cheap, effective, rugged and safe (QuEChERS) sample preparation and the classical method established by National Veterinary Research and Quarantine Service (NVRQS) for the determination of pesticide residues in livestock products using GC-tandem mass spectrometry. The classical method by NVRQS used liquid-liquid partioning followed by evaporizing. The modified QuEChERS entailed extraction of 2 g sample with 15 ml acetonitrile containing 1% acetic acid followed by addition of 6 g anhydrous magnesium sulfate and 1.5 g sodium acetate. After centrifugation, 6 ml of the extract underwent a cleanup step (in a technique known as column-based solid phase extraction) using 400 mg each of $C_{18}$ and primary secondary amine sorbents plus 1,200 mg magnesium sulfate. The quantitation of individual pesticides by both methods was based on tissue standard calibration curves with a correlation coefficient in excess of 0.98 for the 24 pesticides. The detection limits by the classical method were ranged 1.3~5.0 ${\mu}g$/kg, with mean recoveries between 76.2% and 114.3% except aldrin (59.3%) and deltamethrin (63.6%). The detection limits by modified QuEChERS were ranged 0.3~6.2 ${\mu}g$/kg, with mean recoveries between 68.0% and 114.3% except dimethipin (152.6%), chlorfenvinphos (138.1%), 4,4-DDT (61.5%), aldrin (60.4%) and chinomethionate (30.3%).

Multi-residue Pesticide Analysis in Cereal using Modified QuEChERS Samloe Preparation Method (곡물류 중 잔류농약 다성분 분석을 위한 개선된 QuEChERS 시료 정제법의 개발)

  • Yang, In-Cheol;Hong, Su-Myeong;Kwon, Hye-Young;Kim, Taek-Kyum;Kim, Doo-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.314-334
    • /
    • 2013
  • This study explored an efficient modified Quick, Easy, Cheap, Effective, Rugged and safe (QuEChERS) method combined with liquid chromatography-electrospray ionization with tandem mass spectrometric detection for the analysis of residues of 76 pesticides in brown rice, barley and corn including acidic sulfonylurea herbicides. Formic acid (1%) acid in acetonitrile and dispersive solid phase extractions used for extraction of pesticides and clean-up of the extract respectively. Two fortified spikes at 50 and 200 ng $g^{-1}$ levels were performed for recovery test. Mean recoveries of majority of pesticides at two spike levels ranged from 73.2 to 132.2, 80.9 to 136.8, 66.6 to 143.5 for brown rice, barley and corn respectively with standard error (CV) less than 10%. Good linearity of calibration curves were achieved with $R^2$ > 0.9907 within the observed concentration ranged. The modified method also provided satisfactory results for sulfonylurea herbicides. The method was applied to the determination of residues of target pesticides in real samples. A total of 26 pesticides in 36 out of 98 tasted samples were observed. The highest concentration was observed for tricyclazole at 1.17 mg $kg^{-1}$ in brown rice. This pesticide in two brown rice samples exceeded their MRLs regulated for rice in republic of Korea. Except tricyclazole none of the observed pesticides' concentration was higher than their MRLs. The results reveal that the method is effectively applicable to routine analysis of residues of target pesticides in brown rice, barley and corn.

Comparative Study of the Efficiency of GC with Large Volume Injector and SPE Clean-up Process Applied in QuEChERS Method (GC-대용량 주입장치와 SPE를 적용한 QuEChERS 잔류농약 분석법의 효율성 비교)

  • Park, Young Jun;Hong, Su Myeong;Kim, Taek Kyum;Kwon, Hye Young;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.370-393
    • /
    • 2015
  • This study was conducted to compare STQ method, multi-residue method in Korean food code and QuEChERS method for validated selected and accuracy, reproducibility and efficiency. A total of 45 selected and targeted pesticides were the analyzed by GC and 5 of them were crops (apple, potato, green pepper, rice, soy bean). $R^2$ values were calculated in the standard calibration curve was over 0.990. Recovery tests were performed by three replications in two levels and the relative standard deviation of the repeated experiments was less than 30%. The average percentage of recoveries in the multi-residue method in Korean food code was 89.13%, QuEChERS method was 92.45% and STQ method was 85.28%. In addition, matrix effects in multi-residue method in Korean food code was 24.61%, QuEChERS method was 23.98% and STQ method showed 11.24%. The STQ method is easy and showed high clean-up effect in extracting the sample solution than the QuEChERS method and clean-up with C18, PLS, PSA cartridge columns. A large volume of the sample was injected in order to compensable for the problem, that occurred due to high detection limit in the analyser. When the STQ method was applied using a large volume injector, the standard calibration curve showed a higher linearity $R^2=0.990$, and method detection limit was 0.01 mg/kg. It showed an average recovery of 91.84% and the relative standard deviations of three replications repeated in two level process was less than 30% and had an average matrix effect of 17.90%.

QuEChERS-based determination of tissue residues and acute toxicity of pyraclofos in rat (QuEChERS 법을 이용한 Rat 조직내 Pyraclofos 잔류 분석 및 급성독성 평가)

  • Pyo, Min-Jung;Hah, Do-Yun;Choi, You-Jeong;Jeong, Kwi-Ok;Han, Chang-Hee;Park, Young-Ho;Kim, Min-Hee;Kim, Won-Gyu;Jung, Jing-Gune;Kim, Munki;Kim, Euikyung
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • Environmental pesticides used for insect control can be transferred from plants to animals even to livestock animals through food chain. Human beings also can be exposed to pesticides by consuming polluted dairy products, including meats, eggs and other milk products. Therefore, the Ministry of Food and Drug Safety (MFDS) established Standard for Pesticide Residue Limits in dairy products. The QuEChERS (quick, easy, cheap, effective, rugged and safe) methods for detecting residual pesticides are relatively well established for fruits and vegetables, however, the methods for meat have not been appropriately studied yet. In the present work, pyraclofos was used as an organophosphate pesticide to examine its tissue residue in experimental animals by QuEChERS methods. For this, pyraclofos (150 mg/kg body weight) was orally administered to male rats once a day for 2 days. After 6, 12, and 24 hr of the treatment, the tissue residues in liver and femoral muscle of the rats were determined using QuEChERS methods followed by HPLC analyses. In preliminary studies, the recovery rates of spiking samples of pyraclofos demonstrated approximately 109~110% from the tissues. In previous study, pyraclofos tissue residues were observed with significantly high levels in livers and muscles at 6 hr of oral treatment. Then, they were almost completely disappeared after 24 hr of the administration, indicating the orally exposed pyraclofos is rapidly absorbed and distributed to body organs, then quickly excreted from the body with a negligible level of tissue residue. The alterations in blood chemistry as well as the histopathology of heart, lung, liver, spleen and kidney have also been investigated in the experimental animals for assessing acute toxic effects of pyraclofos. The obtained blood chemistry indexes (ALT and AST) showed maximum peak values at 12 hr after the oral administration and decreased to the normal levels at 24 hr of the treatment. Histopathologic observation exhibited acute hepatic damages at 24 hr of the treatment. In conclusion, we suggest that QuEChERS method can be adequately optimized for the analysis of pyraclofos residues in animal tissues.