• Title/Summary/Keyword: QRS-complex

Search Result 132, Processing Time 0.023 seconds

The Classification of Arrhythmia Using Similarity Analysis Between Unit Patterns at ECG Signal (ECG 신호에서 단위패턴간 유사도분석을 이용한 부정맥 분류 알고리즘)

  • Bae, Jung-Hyoun;Lim, Seung-Ju;Kim, Jeong-Ju;Park, Sung-Dae;Kim, Jeong-Do
    • The KIPS Transactions:PartD
    • /
    • v.19D no.1
    • /
    • pp.105-112
    • /
    • 2012
  • Most methods for detecting PVC and APC require the measurement of accurate QRS complex, P wave and T wave. In this study, we propose new algorithm for detecting PVC and APC without using complex parameter and algorithms. Proposed algorithm have wide applicability to abnormal waveform by personal distinction and difference as well as all sorts of normal waveform on ECG. To achieve this, we separate ECG signal into each unit patterns and made a standard unit pattern by just using unit patterns which have normal R-R internal. After that, we detect PVC and APC by using similarity analysis for pattern matching between standard unit pattern and each unit patterns.

Evaluation of functional wireless sensor node based Ad-hoc network for indoor healthcare monitoring (실내 건강모니터링을 위한 Ad-hoc기반의 기능성 무선센서노드 평가)

  • Lee, Dae-Seok;Do, Kyeong-Hoon;Lee, Hun-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.313-316
    • /
    • 2009
  • A novel approach for electrocardiogram (ECG) analysis within a functional sensor node has been developed and evaluated. The main aim is to reduce data collision, traffic over loads and power consumption in healthcare applications of wireless sensor networks (WSN). The sensor node attached on the patient's bodysurface around the heart can perform ECG analysis based on a QRS detection algorithm to detect abnormal condition of the patient. Data transfer is activated only after detected abnormality in the ECG. This system can reduce packet loss during transmission by reducing traffic overload. In addition, it saves power supply energy leading to more reliable, cheap and user-friendly operation in the WSN based ubiquitous health monitoring.

  • PDF

A Study on ECG Oata Compression Algorithm Using Neural Network (신경회로망을 이용한 심전도 데이터 압축 알고리즘에 관한 연구)

  • 김태국;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.191-202
    • /
    • 1991
  • This paper describes ECG data compression algorithm using neural network. As a learning method, we use back error propagation algorithm. ECG data compression is performed using learning ability of neural network. CSE database, which is sampled 12bit digitized at 500samp1e/sec, is selected as a input signal. In order to reduce unit number of input layer, we modify sampling ratio 250samples/sec in QRS complex, 125samples/sec in P & T wave respectively. hs a input pattern of neural network, from 35 points backward to 45 points forward sample Points of R peak are used.

  • PDF

Detection of ECG Characteristic Points for Heart Disease Diagnosis (심장질환 진단을 위한 ECG 신호에서의 특징점 검출)

  • 신승철;강재환;김승환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.199-201
    • /
    • 2002
  • 본 논문에서는 심장질환의 진단 알고리즘의 개발에 있어서 필수적으로 요구되는 심장질환별 ECG 데이터의 수집에 관하여 기술한다. 또한, 진단 알고리즘을 개발하기 위한 전단계로서 심전도 신호에서 각 특징들을 검출하는 알고리즘에 관하여 설명하고, 이를 MITDB와 수집한 ECG 신호에 적용한 결과를 보인다. QRS-complex의 검출은 99% 이상의 정확도를 보이나, P-wave와 T-wave의 검출에서는 아직까지 보완할 점이 많은 것으로 나타난다. 심장질환별 12-채널 ECG 데이터베이스의 구축은 보다 정확하고 현실적인 진단 알고리즘을 개발하는 데 크게 기여할 것으로 기대한다.

  • PDF

Pulse-Coded Train and QRS Feature extraction Using Linear Prediction (선형예측법을 이용한 심전도 신호의 부호화와 특징추출)

  • Song, Chul-Gyu;Lee, Byung-Chae;Jeong, Kee-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.175-178
    • /
    • 1992
  • This paper proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex. the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to set of three states pulse-cord train relative to the original ECG signal. The pulse-cord train has the advantage of easy implementation in digital hardware circuits to achive automated ECG diagnosis. The algorithm performs very well feature extraction in arrythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contration) detection has a at least 90 percent sensityvity for arrythmia data.

  • PDF

Study on Noise Reduction of ECG Signal using Wavelets Transform (심전도신호의 잡음제거를 위한 웨이브렛변환의 적용에 관한 연구)

  • Chang, Doo-Bong;Lee, Sang-Min;Shin, Tae-Min;Lee, Gun-Ki
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.39-46
    • /
    • 1998
  • One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, P, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detection techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.

  • PDF

Design of Fuzzy System for Decision of Arrhythmia using Wavelet Coefficients (웨이브렛 계수를 이용한 부정맥 판정용 퍼지시스템 설계)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.230-238
    • /
    • 2002
  • In this paper, we designed a fuzzy system using the wavelet coefficients to detection the PVCs effectively and to increase the accuracy of decision of the arrhythmia. In the proposed Fuzzy system, the QRS complex of ECG signal is divided into 6th level frequence bands by wavelet transform using Haar wavelet. The MIT/BIH database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, the decision of membership functions for PVCs and heart rates by using Fuzzy rules, we detected the abnormal values effectively by application of leaned from neural network and we also found results in classification ratio of 95% the decision of arrhythmia.

Identification of Individuals using Single-Lead Electrocardiogram Signal (단일 리드 심전도를 이용한 개인 식별)

  • Lim, Seohyun;Min, Kyeongran;Lee, Jongshill;Jang, Dongpyo;Kim, Inyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • We propose an individual identification method using a single-lead electrocardiogram signal. In this paper, lead I ECG is measured from subjects in various physical and psychological states. We performed a noise reduction for lead I signal as a preprocessing stage and this signal is used to acquire the representative beat waveform for individuals by utilizing the ensemble average. From the P-QRS-T waves, features are extracted to identify individuals, 19 using the duration and amplitude information, and 16 from the QRS complex acquired by applying Pan-Tompkins algorithm to the ensemble averaged waveform. To analyze the effect of each feature and to improve efficiency while maintaining the performance, Relief-F algorithm is used to select features from the 35 features extracted. Some or all of these 35 features were used in the support vector machine (SVM) learning and tests. The classification accuracy using the entire feature set was 98.34%. Experimental results show that it is possible to identify a person by features extracted from limb lead I signal only.

Noise Reduction and Characteristic Points Detectoin of ECG Signal using Wavelet Transforms (웨이브렛 변환을 이용한 ECG신호의 잡음제거와 특징점 검출)

  • 장두봉;이상민;신태민;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1998
  • One of the main techniques for diagnosing heart disease is by examining the electrocardiogram(ECG). Many studies on detecting the QRS complex, p, and T waves have been performed because meaningful information is contained in these parameters. However, the earlier detecting techniques can not effectively extract those parameters from the ECG that is severely contaminated by noise source. In this paper, we performed the extracting parameters from and recovering the ECG signal using wavelets transform that has recently been applying to various fields.

  • PDF

A Study on Labeling of ECG Signal using Fuzzy Clustering (퍼지 클러스터링을 이용한 심전도 신호의 라벨링에 관한 연구)

  • Kong, I.W.;Lee, J.W.;Lee, S.H.;Choi, S.J.;Lee, M.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.118-121
    • /
    • 1996
  • This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.

  • PDF