Analyzing the ECG signal, we can find heart disease, for example, arrhythmia and myocardial infarction, etc. Particularly, detecting arrhythmia is more important, because serious arrhythmia can take away the life from patients within ten minutes. In this paper, we would like to introduce the signal processing for ECG analysis and the device made for wireless communication of ECG data. In the signal processing, the wavelet transform decomposes the ECG signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex and eliminate the noise from the original ECG signal. To recognize the ECG signal pattern, we adopted the polynomial approximation partially and statistical method. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. Comparing the approximated ECG pattern with the database, we can detect and classify the heart disease. The ECG detection device consists of amplifier, filters, A/D converter and RF module. After amplification and filtering, the ECG signal is fed through the A/D converter to be digitalized. The digital ECG data is transmitted to the personal computer through the RF transceiver module and serial port.
Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and the prevention of possible life threatening cardiac diseases. Most methods for detecting arrhythmia require pp interval, or the diversity of P wave morphology, but they are difficult to detect the p wave signal because of various noise types. Thus, it is necessary to use noise-free R wave. So, the new approach for the detection of PVC is presented based on the rhythm analysis and the beat matching in this paper. For this purpose, we removed baseline wandering of low frequency band and made summed signals that are composed of two high frequency bands including the frequency component of QRS complex using the wavelet filter. And then we designed R wave detection algorithm using the adaptive threshold and window through RR interval. Also, we developed algorithm to classify PVC using RR interval. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate average detection rate of 99.76%, sensitivity of 99.30% and specificity of 98.66%; accuracy respectively for R wave and PVC detection.
본 연구는 공진이론에 기초한 인덱스 함수(index function)를 이용하여 간단하게 QRS를 검출하는 새로운 알고리즘에 관한 것이다 ECG 근 몇 개의 사인파형의 조합으로 모델링 가능하며. 이때 ECG의 일차차분 값은 사인파형의 크기 및 주파수와 관계가 있다. 이 사실에 근거하여, R-L-C 회로의 허수부의 제곱값과 유사한 인덱스함수를 디자인하였으며. 인덱스 함수의 응답에 적응방법(adaptive method)를 첨가하여 QRS를 검출하였다. 이 알고리즘은 다른 QRS 검출 알고리즘에 비해 비슷하거나 높은 검출성능을 보였고. 복잡한 전처리 또는 후처리 과정이 필요치 않으므로 실시간 검출에 유용하게 사용될 수 있을 것이다.
The detection of P-waves and T-wave in the electrocardiogram signal analysis is an important issue. But the accuracy of the boundary detection algorithm is an insufficient level in the change of slow transition in the signal compared to the QRS complex. This study proposes an algorithm to detect P-wave and T-wave sequentially after determining local baseline using QRS complex. First, we detected the peak points based on local baseline and determined the onset and offset through the calculation of the area of the section. After modifying the baseline using detected waveform, we detected the other waveform in the same way and separated the P-wave and the T-wave based on the location. We used the PhysioNet QT database to evaluate the performances of the algorithm, and calculate the mean and the standard deviations. The experiment results show that standard deviations are under the tolerances accepted by expert physicians, and outperform the results obtained by the other algorithms.
Cardiac arrhythmias are associated with electrical Instability and, hence, with abnormal mechanical activity of the heart in many cases, arrhythmias can be treated with drugs or electric shock to control and/or stop them. Hence fast arrhythmia detection is very important. In this paper RR interval, QRS width, and morphology are used for diagnosis and QRS complex is detected by hardware system. hence diagnosing time is shorten. Moreover doctors or nurses who have little knowledge of computer manipulation can get the Information of Patient's ECG by showing characteristics of abnormal waveform and by mapping graphs of RR interval .vs. QRS width and RR interval .vs. morphology on screen.
matched filter는 신호와 잡음의 통계적 값을 알고 있을 때 신호대 잡음비를 최대로 하는 filter이다. 그런데, matched filter가 최적화 되려면 잡음이 white noise이어야한다. 그러나 ECG신호에 존재하는 잡음은 여러가지 성분이 공존하는 서로 연관되어있는 잡음이다. 따라서 whitening filter를 사용하여 잡음을 whitening시킨후에 matched filter를 통과 시켜야한다. 본 논문에서는 QRS complex를 검출하기 위한 matched filter에 있어서 LMS방법을 이용한 linear whitening filter와 neural network을 이용한 non-linear whitening filter의 특성을 비교하였다.
Analyzing the ECG signal, we can find heart disease. Myocardial ischemia is a disorder of cardiac function caused by insufficient blood flow to the muscle tissue of the heart. Myocardial ischemia is inscribed on ST-segment of the ECG during and after patient takes exercise or is under stress, but after long time past, the ECG pattern is return to steady state. Therefore, it is necessary to monitor and analyze the ECG signal continuously for patient or aged people. Our primary purpose is the detection of temporary change of the ST-segment of ECG automatically. In the signal processing, the wavelet transform decomposes the ECG signal into high and low frequency components using wavelet function. Recomposing the high frequency bands including QRS complex, we can detect QRS complex more easily ...
This study describes the ambulatory ECG monitoring system for the remote autom atic diagnosis. System: tlardware is based on one chip microcomputer(80c31) and its peripherals which consists of A/D, EPROM, RAM, LCD display and two preamplifiers, Power circuits, control logic circuits. A/D converted data were differentiated and low pass filtered. The detection of QRS complex and R point were accomplished by software algorithm based on adaptive threshold computed on low pass fi:leered signal. Rhythm analysis is performed by RR interval and average RR interval. The performance of QRS detection algorithm is evaluated by using MIT/BIH data base. Using this system, the trends of the arrythmia during the long term could be saved and displayed.
This paper described the estimator and eliminator far three kinds of artifacts in electrocardiogram. The most efficient estimation of baseline drift could be obtain in the cubic spline interpolation method with the PQ and TP segment which are considered to be isoelectric, from the experimental results obtained from the applied 4 types of algorithms. The time loss and distortion could be avoided with the aid of detection criteria by checking if baseline drifts exist or not. The AIEF proposed in this paper was verified as having the best removal performance with less distortion in the QRS complex through the comparison of 5 proposed algorithms. furthermore, the AIEF are most suitable far the ECG analyzer which was only needed relatively short time data due to the fast conversion into the stable state. The proposed parabolic filter with 11 points width was identified as having the best performance for the elimination of muscle artifacts. Also we could obtain 99.7% detection accuracy of spike component and minimize the error identifying QRS complex as spike.
This paper describes far the detection of heart event that is, QRS complex and P wave which are result from heart activity. The proposed QRS detection method by using the spatial velocity was identified as having the 99.6% detection accuracy as well as fast processing time. Atrial flutter, coupled P wave, and noncoupled P wave as well as atrial fibrillation could be detected correctly by three different algorithms according to their origination farm. About 99.6% correction accuracy coupled P wave could be obtained and we could be found that most detection errors are caused by establishing wrong search interval.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.