• Title/Summary/Keyword: QRS cancellation

Search Result 4, Processing Time 0.027 seconds

T Wave Detection Algorithm based on Target Area Extraction through QRS Cancellation and Moving Average (QRS구간 제거와 이동평균을 통한 대상 영역 추출 기반의 T파 검출 알고리즘)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.450-460
    • /
    • 2017
  • T wave is cardiac parameters that represent ventricular repolarization, it is very important to diagnose arrhythmia. Several methods for detecting T wave have been proposed, such as frequency analysis and non-linear approach. However, detection accuracy is at the lower level. This is because of the overlap of the P wave and T wave depending on the heart condition. We propose T wave detection algorithm based on target area extraction through QRS cancellation and moving average. For this purpose, we detected Q, R, S wave from noise-free ECG(electrocardiogram) signal through the preprocessing method. And then we extracted P, T target area by applying decision rule for four PAC(premature atrial contraction) pattern another arrhythmia through moving average and detected T wave using RT interval and threshold of RR interval. The performance of T wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 95.32%.

P-wave Detection Using Wavelet Transform (Wavelet Transform을 이용한 P파 검출에 관한 연구)

  • 윤영로;장원석
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.507-514
    • /
    • 1996
  • The automated ECG diagnostic systems in hospital have a low P-wave detection capacity in case of some diseases like conduction block. The purpose of this study is to improve the P-wave detection ca- pacity using wavelet transform. The first procedure is to remove baseline drift by subtracting the median filtered signal from the original signal. The second procedure is to cancel ECG's QRS-T complex from median filtered signal to get P-wave candidate. Before we subtracted the templete from QRS-T complex, we estimated the best matching between templete and QRS-T complex to minimize the error. Then, wavelet transform was applied to confirm P-wave. In particular, haiti wavelet was used to magnify P-wave that consisted of low frequency components and to reject high frequency noise of QRS-T complex cancelled signal. Finally, p-wave was discriminated and confirmed by threshold value. By using this method, We can got the around 95.1% P-wave detection. It was compared with contextual information.

  • PDF

Improvement of ECG P wave Detection Performance Using CIR(Contextusl Information Rule-base) Algorithm (Contextual information 을 이용한 P파 검출에 관한 연구)

  • 이지연;김익근
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.235-240
    • /
    • 1996
  • The automated ECG diagnostic systems that are odd in hospitals have low performance of P-wave detection when faced with some diseases such as conduction block. So, the purpose of this study was the improvement of detection performance in conduction block which is low in P-wave detection. The first procedure was removal of baseline drift by subtracting the median filtered signal of 0.4 second length from the original signal. Then the algorithm detected R peak and T end point and cancelled the QRS-T complex to get'p prototypes'. Next step was magnification of P prototypes with dispersion and detection of'p candidates'in the magnified signal, and then extraction of contextual information concerned with P-waves. For the last procedure, the CIR was applied to P candidates to confirm P-waves. The rule base consisted of three rules that discriminate and confirm P-waves. This algorithm was evaluated using 500 patient's raw data P-wave detection perFormance was in- creased 6.8% compared with the QRS-T complex cancellation method without application of the rule base.

  • PDF

P Wave Detection based on QRST Cancellation Zero-One Substitution

  • Cho, Ik-Sung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Cardiac arrhythmias are common heart diseases and generally cause sudden cardiac death. Electrocardiogram (ECG) is an effective tool that can reveal the electrical activity of the heart and diagnose cardiac arrhythmias. We propose detection of P waves based on QRST cancellation zero-one substitution. After preprocessing, the QRST segment is determined by detecting the Q wave start point and T wave end point separately. The Q wave start point is detected by digital analyses of the QRS complex width, and the T wave end point is detected by computation of an indicator related to the area covered by the T wave curve. Then, we determine whether the sampled value of the signal is in the interval of the QRST segment and substitute zero or one for the value to cancel the QRST segment. Finally, the maximum amplitude is selected as the peak of the P wave in each RR interval of the residual signal. The average detection rate for the QT database was 97.67%.