• Title/Summary/Keyword: Q10

Search Result 7,652, Processing Time 0.044 seconds

Structural and Solubility Characteristics of Coenzyme Q10 Complexes Including Cyclodextrin and Starch (사이클로덱스트린과 전분을 이용한 coenzyme Q10 복합체의 특성 연구)

  • Lee, Joon-Kyoung;Lee, Hyun-Joo;Lim, Jae-Kag
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.180-188
    • /
    • 2014
  • This study focused on assessing the solubility and structural characteristics of two types of coenzyme $Q_{10}$ ($CoQ_{10}$) complexes: the $CoQ_{10}$-starch and the $CoQ_{10}$-cyclodextrin complexes. The solubility of $CoQ_{10}$-starch complex increased significantly as the temperature was increased. However, the solubility of $CoQ_{10}$-cyclodextrin complex reached a peak at $37^{\circ}C$, and strong aggregation occurred at $50^{\circ}C$. When the temperature was raised to $80^{\circ}C$, the $CoQ_{10}$-cyclodextrin complex dissociated owing to the weakening of bonds, resulting in $CoQ_{10}$ emerging at the surface of water. Therefore, $CoQ_{10}$-cyclodextrin complexes have lower solubility, due to their reduced heat-stability, than do the $CoQ_{10}$-starch complexes. Structural differences between the two $CoQ_{10}$ complexes were confirmed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD), and differential scanning calorimeter (DSC). The $CoQ_{10}$-cyclodextrin complex included an isoprenoid chain of $CoQ_{10}$, while the $CoQ_{10}$-starch complex included both the benzoquinone ring and the isoprenoid chain of $CoQ_{10}$. These results suggest that $CoQ_{10}$-starch complexes possess higher heat-stability and solubility than do the $CoQ_{10}$-cyclodextrin complexes.

Antioxidant and Cytotoxic Effects of Coenzyme Q10 Derivatives (Coenzyme Q10 유도체들의 항산화 및 세포독성 효과)

  • Choi, Won-Sik;Nam, Seok-Woo;Ahn, Eun-Kyung;Eo, Jin-Yong;Lim, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1787-1794
    • /
    • 2008
  • Coenzyme $Q_{10}$ and six derivatives of coenzyme $Q_n$ were synthesized and tested for their antioxidative effects occurred in proximal tubular epithelial cell (LLC-PK1 cell) and cytotoxicities using in NIH/3T3 cell. As the result, synthetic coenzyme $Q_n$ derivatives showed a potent antioxidative effect compared to coenzyme $Q_{10}$. Among these synthetic compounds, coenzyme $Q_3$-C at ranged 0.04 to 0.4 mmol showed the $107.7{\sim}135.9%$ of cell viability in LLC-PK1 cell. In the test of NIH/3T3, all synthesized coenzyme $Q_n$ derivatives showed the similar effect compared with coenzyme $Q_{10}$. A correlation between isoprene unit number of coenzyme $Q_n$ derivatives and its biological effects, we suggest reduction of isoprene unit number of $Q_n$ derivatives may be related to the increase of antioxidants effects and the reduction of cytotoxicities.

Optimization of Fermentation Conditions for CoQ10 Production Using Selected Bacterial Strains (CoQ10 생성 세균의 선별 및 발효조건 최적화)

  • Jeong, Keun-Il;Kang, Won-Hwa;Lee, Jung-Ah;Shin, Dong-Ha;Bae, Kyung-Sook;Park, Ho-Young;Park, Hee-Moon
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.46-51
    • /
    • 2010
  • Coenzyme Q10 (CoQ10) is an essential lipid-soluble component of membrane-bound electron transport chains. CoQ10 is involved in several aspects of cellular metabolism and is increasingly being used in therapeutic applications for several diseases. Despite the recent accomplishments in metabolic engineering of Escherichia coli for CoQ10 production, the production levels are not yet competitive with those by fermentation or isolation. So we tested several microorganisms obtained from the KCTC of Biological Resource Center to find novel sources of strain-development for CoQ10-production. Then we selected two strains, Paracoccus denitrificans (KCTC 2530) and Asaia siamensis (KCTC 12914), and tested to optimize the CoQ10 production conditions. Among the carbon sources tested, CoQ10 production was the highest when fructose was supplied about 4% concentration. Yeast extract produced the highest CoQ10 production about 2% concentration. The highest CoQ10 production was obtained at pH 6.0 for P. denitrificans and pH 8.0 for A. siamensis. And two strains showed the highest CoQ10 production at $30^{\circ}C$, but the highest DCW was obtained at $37^{\circ}C$. In the fed-batch culture, P. denitrificans yielded $14.34{\pm}0.473$ mg and A. siamensis yielded $12.53{\pm}0.231$ mg of final CoQ10 production.

Influence of Organic, Inorganic Nitrogen Sources and Amino Acids on the Biosynthesis of Coenzyme $Q_{10}$ by Agrobacterium tumefaciens Mutant (Agrobacterium tumefaciens 변이주에 의한 Coenzyme $Q_{10}$ 생합성시 유기, 무기질소원과 아미노산의 영향)

  • Kim, Jeong-Keun;Won, Yong-Bae;Lee, Kang-Moon;Koo, Yoon-Mo
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • The effect of inorganic, organic nitrogen sources and amino acids on the coenzyme $Q_{10}$ production and coenzyme $Q_{10}$ component ratio was investigated. Among the nine organic nitrogen sources, CSP showed a remarkable enhancing effect on the production of coenzyme $Q_{10}$. But this enhancement was not observed in medium containing Bacto peptone, tryptone, casamino acid and soybean meal. These differences on the production of coenzyme $Q_{10}$ may be due to differences in kinds and amounts of component amino acids and peptides in the various organic nitrogen sources tested. In the addition of inorganic nitrogens, only $(NH_4)_2SO_4$ increase the coenzyme $Q_{10}$ production by 2.0 times compare to the control group. The addition of L-tyrosine to the medium containing Bacto tryptone, was also determined to be crucial for the coenzyme $Q_{10}$ production. But phenylalanin and tryptophan, other aromatic amino acids, had no stimulatory effect on the coenzyme $Q_{10}$ production. These results show that the production and components ratio of coenzyme $Q_{10}$ was greatly affected by the kinds and the concentration of inorganic, organic nitrogen sources as well as amino acids.

Effects of Coenzyme Q10 on the Antioxidant System in Blood and Liver of Laying Hens (산란계에서 Coenzyme Q10 급여가 혈액 및 간 조직의 항산화 작용에 미치는 영향)

  • Moon, Yang-Soo;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.49 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • The objective of this study was to investigate the effects of dietary coenzyme Q10 (CoQ10) sources on the antioxidant defense system in the blood and liver of laying hens. Thirty-six 40-wk old Lohmann Brown hens were randomly assigned to three groups based on body weight, with four cages with three layers each. Laying hens were divided into one of the following groups: control (CON), powdered CoQ10 (PCoQ, 100 mg/kg diet), and emulsified CoQ10 (ECoQ, 100 mg/kg diet). All hens were fed a control diet or a control diet supplemented with powdered or emulsified CoQ10 ad libitum for five weeks. There were no differences in body weight, weight gain, and organ weights among the treatment groups, including the liver and spleen. The blood total antioxidant power (TAP) in the ECoQ group increased (P<0.05) by approximately 2-fold compared to that in the CON group. However, there was no significant difference in blood TAP levels between the PCoQ and ECoQ groups, although a decreasing trend (P<0.13) was observed for levels of TAP in the ECoQ group. The mRNA expression and specific activities of superoxide dismutase, glutathione peroxidase, and catalase in the liver were not affected by dietary CoQ10 or type of CoQ10. However, hepatic lipid peroxidation in the ECoQ group was lower (P<0.05) than in the CON group. In conclusion, emulsified CoQ10 increased blood TAP and decreased hepatic lipid peroxidation without affecting antioxidant enzymes, suggesting that emulsified CoQ10 might be more applicable as an active antioxidant supplement than powdered type in laying hens.

Effect of Dietary Coenzyme $Q_{10}$ on Lipid Peroxidation in Adriamycin-treated Rats - II. Effect on Mitochondrial Coenzyme $Q_{10}$ Level and Fatty Acid Composition - (식이 중의 Coenzyme $Q_{10}$첨가가 Adriamycin을 투여한 흰쥐의 체내 지질과산화에 미치는 영향 -II. 미토콘드리아내의 Coenzyme $Q_{10}$ 수준과 지방산 조성에 미치는 영향-)

  • Seo, Jung-Sook;Han, In-Kyu
    • Journal of Nutrition and Health
    • /
    • v.24 no.4
    • /
    • pp.299-307
    • /
    • 1991
  • The present study was designed to evaluate the effects of dietary coenzyme $Q_{10}$ on mitochondrial coenzyme $Q_{10}$ and fatty acid composition in adriamycin (ADR)-treated rats. Two experiments were conducted in rats. Experiment 1 was undertaken under the condition of simultaneous administration of ADR and coenzyme $Q_{10}$ for 4 weeks. Experiment 2 was undertaken under the same condition as experiment 1 after feeding the experimental diets alone without administration of ADR for 4 weeks. Heart mitochondrial coenzyme $Q_{10}$ level of rats was greatly decreased by ADR treatment. but higher level of dietary coenzyme $Q_{10}$ elevated this decrease to control ranges. Pretreatment with dietary supplementation of coenzyme $Q_{10}$ showed a significant increase in myocardial coenzyme $Q_{10}$ level. With ADR treatment. polyunsaturated fatty acids such as arachidonic acid (20 : 4) and docosahexaenoic acid (22 : 6) were decreased. However, dietary supplementation of coenzyme $Q_{10}$ modified this decrement to some extent. In both experiment 1 and 2. the polyunsaturated fatty acids/saturated and polyunsaturated fatty acids (P/S+ M) ratio of ADR-treated rats tended to be lower than that of control rats.

  • PDF

Effects of pH and Light Irradiation on Coenzyme Q10 Production Using Rhodobacter sphaeroides

  • Jeong, Soo-Kyoung;Dao, Van Thingoc;Kien, Ngyuen;Kim, Joong-Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.4
    • /
    • pp.219-223
    • /
    • 2008
  • To increase the level of $CoQ_{10}$ production in mass culture, the effects of pH and light irradiation on $CoQ_{10}$ production by Rhodobacter sphaeroides were investigated in a 1-L bioreactor. $CoQ_{10}$ production was growth-associated, and the highest production of $CoQ_{10}$ (1.69 mg/g dry cell) was obtained under uncontrolled pH: this production was 1.7 times higher than that obtained at controlled pH 7. Therefore, pH was a key factor affecting $CoQ_{10}$ production. The effect of light irradiation on $CoQ_{10}$ production was negligible. This result offers an advantage for mass production of $CoQ_{10}$.

Association of Colony Morphology with Coenzyme $Q_{10}$ Production and Its Enhancement from Rhizobium radiobacter T6102W by Addition of Isopentenyl Alcohol as a Precursor

  • Seo, Myung-Ji;Kook, Moo-Chang;Kim, Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.230-233
    • /
    • 2012
  • Rhizobium radiobacter T6102 was morphologically purified by the aniline blue agar plates to give two distinct colonies; white smooth mucoid colony (T6102W) and blue rough colony (T6102B). The coenzyme $Q_{10}$ ($CoQ_{10}$) was produced just by T6102W, showing 2.0 mg/g of $CoQ_{10}$ content, whereas the T6102B did not produce the $CoQ_{10}$. All of the used $CoQ_{10}$ biosynthetic precursors enhanced the $CoQ_{10}$ production by T6102W. Specifically, the supplementation of 0.75 mM isopentenyl alcohol improved the $CoQ_{10}$ concentration (19.9 mg/l) and content (2.4 mg/g) by 42% and 40%, respectively.

Antioxidant Effect of $CoQ_{10}$ on N-nitrosodiethylamine-induced Oxidative Stress in Mice

  • Song, Ho-Sun;Kim, Hee-Rae;Park, Tae-Wook;Cho, Bong-Jae;Choi, Mi-Young;Kim, Chang-Jong;Sohn, Uy-Dong;Sim, Sang-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.321-326
    • /
    • 2009
  • The antioxidant effect of $CoQ_{10}$ on N-nitrosodiethylamine (NDEA)-induced oxidative stress was investigated in mice. Food intake and body weight were similar in both $CoQ_{10}$ and control groups during the 3-week experimental period. NDEA significantly increased the activities of typical marker enzymes of liver function (AST, ALT and ALP) both in control and $CoQ_{10}$ groups. However, the increase of plasma aminotransferase activity was significantly reduced in the $CoQ_{10}$ group. Lipid peroxidation in various tissues, such as heart, lung, liver, kidney, spleen and plasma, was significantly increased by NDEA, but this increase was significantly reduced by 100 mg/kg of $CoQ_{10}$. Superoxide dismutase activity increased significantly upon NDEA-induced oxidative stress in both the control and $CoQ_{10}$ groups with the effect being less in the $CoQ_{10}$ group. Catalase activity decreased significantly in both the control and $CoQ_{10}$ groups treated with NDEA, again with the effect being less in the $CoQ_{10}$ group. The lesser effect on superoxide dismutase and catalase in the NDEA-treated $CoQ_{10}$ group is indicative of the protective effect $CoQ_{10}$. Thus, $CoQ_{10}$ can offer useful protection against NDEA-induced oxidative stress.