Annual Conference on Human and Language Technology
/
2022.10a
/
pp.541-544
/
2022
코로나19 이후로 교육의 형태가 오프라인에서 온라인으로 변화되었다. 하지만 온라인 강의 교육 서비스는 실시간 소통의 한계를 가지고 있다. 이러한 단점을 해결하기 위해 본 논문에서는 기계독해 기반 실시간 강의 질의응답 시스템을 제안한다. 본 논문연구에서는 질의응답 시스템을 만들기 위해 KorQuAD 1.0 학습 데이터를 활용해 BERT를 fine-tuning 했고 그 결과를 이용해 기계독해 기반 질의응답 시스템을 구축했다. 하지만 이렇게 구축된 챗봇은 강의 내용에 대한 질의응답에 최적화되어있지 않기 때문에 강의 내용 질의응답에 관한 문장형 데이터 셋을 구축하고 추가 학습을 수행하여 문제를 해결했다. 실험 결과 질의응답 표를 통해 문장형 답변에 대한 성능이 개선된 것을 확인할 수 있다.
Tae Hong Min;Jae Hong Lee;Soo Kyo In;Kiyoon Moon;Hwiyeol Jo;Kyungduk Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.604-607
/
2022
본 논문은 사용자의 질의에 대한 답변을 제공하는 질의 응답 시스템에서, 제공하는 답변이 사용자의 질의에 대하여 문서에 근거하여 올바르게 대답하였는지 검증하는 QDR validator에 대해 기술한 논문이다. 본 논문의 과제는 문서에 대한 주장을 판별하는 자연어 추론(Natural Language inference, NLI)와 유사한 과제이지만, 문서(D)와 주장(R)을 포함하여 질의(Q)까지 총 3가지 종류의 입력을 받아 NLI 과제보다 난도가 높다. QDR validation 과제를 수행하기 위하여, 약 16,000 건 데이터를 생성하였으며, 다양한 입력 형식 실험 및 NLI 과제 데이터 추가 학습, 임계 값 조절 실험을 통해 최종 83.05% 우수한 성능을 기록하였다
Proceedings of the Korea Information Processing Society Conference
/
2021.05a
/
pp.66-69
/
2021
최근 실시간 응답 및 처리에 민감한 서비스들이 급증하면서 멀티액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 주목받고 있다. 사용자들의 잦은 이동성 때문에 MEC 서버들 사이에서의 마이그레이션은 중요한 문제로 다뤄진다. 본 논문에서는 이동성이 많은 차량 엣지 컴퓨팅 환경을 고려하였으며, 강화학습 기법인 Q-learning 을 사용하여 마이그레이션 여부 및 대상을 결정하는 기법을 제안하였다. 제안 기법의 목적은 지연 제약조건을 만족시키면서 차량 엣지 컴퓨팅 서버(VECS) 사이의 로드 밸런싱을 최적화하는 것이다. 제안 기법의 성능 비교를 통하여 다른 기법들보다 로드 밸런싱 측면에서 약 22-30%, 지연 제약조건 만족도 측면에서 약 20-31%로 더 좋은 성능을 보임을 확인하였다.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.52-55
/
2022
5G 시대에 스마트 모바일 기기가 기하급수적으로 증가하면서 멀티 액세스 엣지 컴퓨팅(MEC)이 유망한 기술로 부상했다. 낮은 지연시간 안에 계산 집약적인 서비스를 제공하기 위해 MEC 서버로 오프로딩하는 특히, 태스크 도착률과 무선 채널의 상태가 확률적인 MEC 시스템 환경에서의 오프로딩 연구가 주목받고 있다. 본 논문에서는 차량의 전력과 지연시간을 최소화하기 위해 로컬 실행을 위한 연산 자원과 오프로딩을 위한 전송 전력을 할당하는 심층 강화학습 기반의 오프로딩 기법을 제안하였다. Deep Deterministic Policy Gradient (DDPG) 기반 기법과 Deep Q-network (DQN) 기반 기법을 차량의 전력 소비량과 큐잉 지연시간 측면에서 성능을 비교 분석하였다.
Proceedings of the Korea Information Processing Society Conference
/
2022.05a
/
pp.74-77
/
2022
최근 사물 인터넷(IoT)의 발전으로 계산 집약적이거나 지연시간에 민감한 태스크가 증가하면서, 모바일 엣지 컴퓨팅 기술이 주목받고 있지만 지상에 고정되어 있는 MEC 서버는 사용자의 요구사항 변화에 따라 서버의 위치를 변경하거나 유연하게 대처할 수 없다. 이 문제를 해결하기 위해 UAV(Unmanned Aerial Vehicle)를 추가로 이용해 엣지 서비스를 제공하는 기법이 연구되고 있다. 그러나 UAV는 지상 MEC와는 달리 배터리 용량이 제한되어 있어 태스크 마이그레이션을 통해 에너지 사용량을 최소화하는 것이 필요하다. 본 논문에서는 MEC 서버들 사이의 로드 밸런싱과 UAV MEC 서버의 에너지 효율성을 최적화하기 위해 강화학습 기법인 Q-learning을 이용한 태스크 마이그레이션 기법을 제안한다. 제안 시스템의 성능을 평가하기 위해 UAV의 개수에 따라 실험을 진행하여 잔여 에너지와 로드 밸런싱 측면에서 성능을 분석한다.
Realization of autonomous agents that organize their own internal structure in order to behave adequately with respect to their goals and the world is the ultimate goal of AI and Robotics. Reinforcement learning gas recently been receiving increased attention as a method for robot learning with little or no a priori knowledge and higher capability of reactive and adaptive behaviors. In this paper, we present a method of reinforcement learning by which a multi robots learn to move to goal. The results of computer simulations are given.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.3-6
/
2004
본 논문에서는 퍼지 로직을 이용하여 로봇과 공의 상태에 따른 로봇 행동의 선택 알고리즘을 제시한다. 전략 및 전술 알고리즘으로 많이 알려진 Modular Q-학습 알고리즘은 개체의 수에 따른 상태수를 지수 함수적으로 증가시킬 뿐만 아니라, 로봇이 협력하기 위해 중재자 모듈이라는 별도의 알고리즘을 필요로 한다. 그러나 앞으로 제시하는 퍼지 로직을 적용한 로봇축구 전략 및 전술 알고리즘은 퍼지 로직을 이용하여 로봇의 주행 알고리즘을 선택하는 과정과 로봇의 행동을 협력하는 과정을 동시에 구현함으로써, 계산 양을 줄여 로봇 축구에 보다 적합하게 해준다.
This study used Q methodology for analogizing culinary arts major students' subjectivity through their participation of one of restaurant start-up experience program, called pop-up restaurant. The study tried to figure out particular structure of among students' responses and noticed five distinctive types. There were Increase learning effect type(Type 1, N=4), Collaboration of members importance type(Type2, N=8), Marketing PR need type(Type3, N=6), Restaurant business plan type(Type4, N=4), Industry work experience required type(Type5, N=3). The study also revealed that each type contained diverse characteristics figures in their own. The research finding could be used as fundamental source of future similar research but in other research methodology in the format of difference among students or diverse measuring point of time frame.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.6
/
pp.342-349
/
2019
We describe and anlayzes the methodology and implementation results of H / W configuration and signal characteristics analysis algorithm for analyzing equipment for analyzing OFDMA physical layer based on 802.16e. Recently, demand for signal analysis of instruments that analyze these signals with the development of digital communication signals is rapidly increasing. Accordingly, it is necessary to develop signal analysis equipment capable of analyzing characteristics of a broadband communication signal using a wideband digital signal processing module. In this paper, we have studied the basic theory of OFDMA in order to devise a device capable of analyzing characterisitcs of broadband communication signals. Second, the structure of OFDMA transmitter/receiver was examined. Third, a wideband digitizer was implemented. we design Wimax signal analysis algorithm based on OFDMA among broadband communication methods and propose Wimax physical layer analysis S/W implementation through I, Q signals. The IF downconverter used the receiver module and the LO generation module of the spectrum analyzer. Quantitative analysis result is obtained through the algorithm of Wimax signal analysis by I, Q data.
As technology advances, the need for enhanced preparedness against cyber-attacks becomes an increasingly critical problem. Therefore, it is imperative to consider various circumstances and to prepare for cyber-attack strategic technology. This paper proposes a method to solve network security problems by applying reinforcement learning to cyber-security. In general, traditional static cyber-security methods have difficulty effectively responding to modern dynamic attack patterns. To address this, we implement cyber-attack scenarios such as 'Tiny Alpha' and 'Small Alpha' and evaluate the performance of various reinforcement learning methods using Network Attack Simulator, which is a cyber-attack simulation environment based on the gymnasium (formerly Open AI gym) interface. In addition, we experimented with different RL algorithms such as value-based methods (Q-Learning, Deep-Q-Network, and Double Deep-Q-Network) and policy-based methods (Actor-Critic). As a result, we observed that value-based methods with discrete action spaces consistently outperformed policy-based methods with continuous action spaces, demonstrating a performance difference ranging from a minimum of 20.9% to a maximum of 53.2%. This result shows that the scheme not only suggests opportunities for enhancing cybersecurity strategies, but also indicates potential applications in cyber-security education and system validation across a large number of domains such as military, government, and corporate sectors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.