• 제목/요약/키워드: Q polynomials

검색결과 207건 처리시간 0.03초

SEMI-CYCLOTOMIC POLYNOMIALS

  • LEE, KI-SUK;LEE, JI-EUN;Kim, JI-HYE
    • 호남수학학술지
    • /
    • 제37권4호
    • /
    • pp.469-472
    • /
    • 2015
  • The n-th cyclotomic polynomial ${\Phi}_n(x)$ is irreducible over $\mathbb{Q}$ and has integer coefficients. The degree of ${\Phi}_n(x)$ is ${\varphi}(n)$, where ${\varphi}(n)$ is the Euler Phi-function. In this paper, we define Semi-Cyclotomic Polynomial $J_n(x)$. $J_n(x)$ is also irreducible over $\mathbb{Q}$ and has integer coefficients. But the degree of $J_n(x)$ is $\frac{{\varphi}(n)}{2}$. Galois Theory will be used to prove the above properties of $J_n(x)$.

DIFFERENTIAL EQUATIONS RELATED TO FAMILY A

  • Li, Ping;Meng, Yong
    • 대한수학회보
    • /
    • 제48권2호
    • /
    • pp.247-260
    • /
    • 2011
  • Let h be a meromorphic function with few poles and zeros. By Nevanlinna's value distribution theory we prove some new properties on the polynomials in h with the coefficients being small functions of h. We prove that if f is a meromorphic function and if $f^m$ is identically a polynomial in h with the constant term not vanish identically, then f is a polynomial in h. As an application, we are able to find the entire solutions of the differential equation of the type $$f^n+P(f)=be^{sz}+Q(e^z)$$, where P(f) is a differential polynomial in f of degree at most n-1, and Q($e^z$) is a polynomial in $e^z$ of degree k $\leqslant$ max {n-1, s(n-1)/n} with small functions of $e^z$ as its coefficients.

Extensions of linearly McCoy rings

  • Cui, Jian;Chen, Jianlong
    • 대한수학회보
    • /
    • 제50권5호
    • /
    • pp.1501-1511
    • /
    • 2013
  • A ring R is called linearly McCoy if whenever linear polynomials $f(x)$, $g(x){\in}R[x]{\backslash}\{0\}$ satisfy $f(x)g(x)=0$, there exist nonzero elements $r,s{\in}R$ such that $f(x)r=sg(x)=0$. In this paper, extension properties of linearly McCoy rings are investigated. We prove that the polynomial ring over a linearly McCoy ring need not be linearly McCoy. It is shown that if there exists the classical right quotient ring Q of a ring R, then R is right linearly McCoy if and only if so is Q. Other basic extensions are also considered.

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • 제58권1호
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

Polynomials and Homotopy of Virtual Knot Diagrams

  • Jeong, Myeong-Ju;Park, Chan-Young;Park, Maeng Sang
    • Kyungpook Mathematical Journal
    • /
    • 제57권1호
    • /
    • pp.145-161
    • /
    • 2017
  • If a virtual knot diagram can be transformed to another virtual one by a finite sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual knot diagrams are said to be homotopic. There are infinitely many homotopy classes of virtual knot diagrams. We give necessary conditions by using polynomial invariants of virtual knots for two virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves and virtual moves between two homotopic virtual knot diagrams, we give a lower bound for the number of crossing changes in S by using the affine index polynomial introduced in [13]. In [10], the first author gave the q-polynomial of a virtual knot diagram to find Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply Reidemeister moves by using the q-polynomial to show homotopy of two virtual knot diagrams.

고차이론을 이용한 보 및 아치형 구조물의 유한요소 해석 (Finite Element Analysis of Beam-and Arch-Like Structures using Higher-Order Theory)

  • 조진래
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.185-191
    • /
    • 1997
  • 보 및 아치형 구조물은 2차원 탄성체이지만 두께가 상대적으로 매우 얇다는 특성 때문에 Kirchhoff이나 Reissner-Mindlin이론과 같이 변위장의 두께방향 변위를 선형함수로 근사화시켜왔다. 그 결과 2차원 문제가 물체의 중립면에서 표현되는 1차원 문제로 차원이 감소되어 이론적 해석이 간편해 진다. 그러나 경계에서와 같이 두께방향 변위가 복잡한 영역의 거동을 보다 정확히 해석하기 위해서는 2차원 선형 탄성이론이나 두께방향 다항식의 차수가 상당히 높아야 한다. 본 논문은 두께방향 다항식의 차수변화에 따른 해석정도 경향 및 여러 다른 차수를 한 문제 영역에 혼합하는 모델조합에 대한 내용을 제시한다.

  • PDF

H-TREES, RESTRICTIONS OF DOWLING GROUP GEOMETRIES

  • Mphako-Banda, Eunice
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.955-962
    • /
    • 2015
  • It has been established that the role played by complete graphs in graph theory is similar to the role Dowling group geometries and Projective geometries play in matroid theory. In this paper, we introduce a notion of H-tree, a class of representable matroids which play a similar role to trees in graph theory. Then we give some properties of H-trees such that when q = 0, then the results reduce to the known properties of trees in graph theory. Finally we give explicit expressions of the characteristic polynomials of H-trees, H-cycles, H-fans and H-wheels.

THE QUANTUM sl(n, ℂ) REPRESENTATION THEORY AND ITS APPLICATIONS

  • Jeong, Myeong-Ju;Kim, Dong-Seok
    • 대한수학회지
    • /
    • 제49권5호
    • /
    • pp.993-1015
    • /
    • 2012
  • In this paper, we study the quantum sl($n$) representation category using the web space. Specially, we extend sl($n$) web space for $n{\geq}4$ as generalized Temperley-Lieb algebras. As an application of our study, we find that the HOMFLY polynomial $P_n(q)$ specialized to a one variable polynomial can be computed by a linear expansion with respect to a presentation of the quantum representation category of sl($n$). Moreover, we correct the false conjecture [30] given by Chbili, which addresses the relation between some link polynomials of a periodic link and its factor link such as Alexander polynomial ($n=0$) and Jones polynomial ($n=2$) and prove the corrected conjecture not only for HOMFLY polynomial but also for the colored HOMFLY polynomial specialized to a one variable polynomial.

EXPRESSIONS OF MEROMORPHIC SOLUTIONS OF A CERTAIN TYPE OF NONLINEAR COMPLEX DIFFERENTIAL EQUATIONS

  • Chen, Jun-Fan;Lian, Gui
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.1061-1073
    • /
    • 2020
  • In this paper, the expressions of meromorphic solutions of the following nonlinear complex differential equation of the form $$f^n+Qd(z,f)=\sum\limits_{i=1}^{3}pi(z)e^{{\alpha}_i(z)}$$ are studied by using Nevanlinna theory, where n ≥ 5 is an integer, Qd(z, f) is a differential polynomial in f of degree d ≤ n - 4 with rational functions as its coefficients, p1(z), p2(z), p3(z) are non-vanishing rational functions, and α1(z), α2(z), α3(z) are nonconstant polynomials such that α'1(z), α'2(z), α'3(z) are distinct each other. Moreover, examples are given to illustrate the accuracy of the condition.

DEHN SURGERY AND A-POLYNOMIAL FOR KNOTS

  • Kim, Jin-Hong
    • 대한수학회보
    • /
    • 제43권3호
    • /
    • pp.519-529
    • /
    • 2006
  • The Property P Conjecture States that the 3-manifold $Y_r$ obtained by Dehn surgery on a non-trivial knot in $S^3$ with surgery coefficient ${\gamma}{\in}Q$ has the non-trivial fundamental group (so not simply connected). Recently Kronheimer and Mrowka provided a proof of the Property P conjecture for the case ${\gamma}={\pm}2$ that was the only remaining case to be established for the conjecture. In particular, their results show that the two phenomena of having a cyclic fundamental group and having a homomorphism with non-cyclic image in SU(2) are quite different for 3-manifolds obtained by Dehn filings. In this paper we extend their results to some other Dehn surgeries via the A-polynomial, and provide more evidence of the ubiquity of the above mentioned phenomena.