• Title/Summary/Keyword: Q polynomials

Search Result 207, Processing Time 0.025 seconds

IRREDUCIBLE POLYNOMIALS WITH REDUCIBLE COMPOSITIONS

  • Choi, Eun-Mi
    • Honam Mathematical Journal
    • /
    • v.33 no.3
    • /
    • pp.355-366
    • /
    • 2011
  • In this paper we investigate criteria that for an irreducible monic quadratic polynomial f(x) ${\in}$ $\mathbb{Q}$[x], $f{\circ}g$ is reducible over $\mathbb{Q}$ for an irreducible polynomial g(x) ${\in}$ $\mathbb{Q}$[x]. Odoni intrigued the discussion about an explicit form of irreducible polynomials f(x) such that $f{\cric}f$ is reducible. We construct a system of infitely many such polynomials.

SYMMETRIC IDENTITIES OF THE DEGENERATE MODIFIED q-EULER POLYNOMIALS UNDER THE SYMMETRIC GROUP

  • Kwon, Jongkyum;Pyo, Sung-Soo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.671-679
    • /
    • 2018
  • Abstract of the article can be written hereAbstract of the article can be written here. Recently, several authors have studied the symmetric identities for special functions(see [3,5-11,14,17,18,20-22]). In this paper, we study the symmetric identities of the degenerate modified q-Euler polynomials under the symmetric group.

A non-standard class of sobolev orthogonal polynomials

  • Han, S.S.;Jung, I.H.;Kwon, K.H.;Lee, J.K..
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.935-950
    • /
    • 1997
  • When $\tau$ is a quasi-definite moment functional on P, the vector space of all real polynomials, we consider a symmetric bilinear form $\phi(\cdot,\cdot)$ on $P \times P$ defined by $$ \phi(p,q) = \lambad p(a)q(a) + \mu p(b)q(b) + <\tau,p'q'>, $$ where $\lambda,\mu,a$, and b are real numbers. We first find a necessary and sufficient condition for $\phi(\cdot,\cdot)$ and show that such orthogonal polynomials satisfy a fifth order differential equation with polynomial coefficients.

  • PDF

ON ZERO DISTRIBUTIONS OF SOME SELF-RECIPROCAL POLYNOMIALS WITH REAL COEFFICIENTS

  • Han, Seungwoo;Kim, Seon-Hong;Park, Jeonghun
    • The Pure and Applied Mathematics
    • /
    • v.24 no.2
    • /
    • pp.69-77
    • /
    • 2017
  • If q(z) is a polynomial of degree n with all zeros in the unit circle, then the self-reciprocal polynomial $q(z)+x^nq(1/z)$ has all its zeros on the unit circle. One might naturally ask: where are the zeros of $q(z)+x^nq(1/z)$ located if q(z) has different zero distribution from the unit circle? In this paper, we study this question when $q(z)=(z-1)^{n-k}(z-1-c_1){\cdots}(z-1-c_k)+(z+1)^{n-k}(z+1+c_1){\cdots}(z+1+c_k)$, where $c_j$ > 0 for each j, and q(z) is a 'zeros dragged' polynomial from $(z-1)^n+(z+1)^n$ whose all zeros lie on the imaginary axis.

ANALYTIC PROPERTIES OF THE q-VOLKENBORN INTEGRAL ON THE RING OF p-ADIC INTEGERS

  • Kim, Min-Soo;Son, Jin-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • In this paper, we consider the q-Volkenborn integral of uniformly differentiable functions on the p-adic integer ring. By using this integral, we obtain the generating functions of twisted q-generalized Bernoulli numbers and polynomials. We find some properties of these numbers and polynomials.

THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS

  • Jang, Lee-Chae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1181-1188
    • /
    • 2010
  • q-Volkenborn integrals ([8]) and fermionic invariant q-integrals ([12]) are introduced by T. Kim. By using these integrals, Euler q-zeta functions are introduced by T. Kim ([18]). Then, by using the Euler q-zeta functions, S.-H. Rim, S. J. Lee, E. J. Moon, and J. H. Jin ([25]) studied q-Genocchi zeta functions. And also Y. H. Kim, W. Kim, and C. S. Ryoo ([7]) investigated twisted q-zeta functions and their applications. In this paper, we consider the q-analogue of twisted Lerch type Euler zeta functions defined by $${\varsigma}E,q,\varepsilon(s)=[2]q \sum\limits_{n=0}^\infty\frac{(-1)^n\epsilon^nq^{sn}}{[n]_q}$$ where 0 < q < 1, $\mathfrak{R}$(s) > 1, $\varepsilon{\in}T_p$, which are compared with Euler q-zeta functions in the reference ([18]). Furthermore, we give the q-extensions of the above twisted Lerch type Euler zeta functions at negative integers which interpolate twisted q-Euler polynomials.

SOME IDENTITIES OF THE GENOCCHI NUMBERS AND POLYNOMIALS ASSOCIATED WITH BERNSTEIN POLYNOMIALS

  • Lee, H.Y.;Jung, N.S.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1221-1228
    • /
    • 2011
  • Recently, several mathematicians have studied some interesting relations between extended q-Euler number and Bernstein polynomials(see [3, 5, 7, 8, 10]). In this paper, we give some interesting identities on the Genocchi polynomials and Bernstein polynomials.

THE NORM RATIO OF THE POLYNOMIALS WITH COEFFICIENTS AS BINARY SEQUENCE

  • Taghavi, M.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.195-200
    • /
    • 2003
  • Given a positive integer q, the ratio of the 2q-norm of a polynomial which its coefficients form a binary sequence and its 2-norm arose from telecommunication engineering consists of finding any type of such polynomials haying the ratio “small” In this paper we consider some special types of these polynomials, discuss the sharpest possible upper bound, and prove a result for the ratio.

ON SOME COMBINATIONS OF SELF-RECIPROCAL POLYNOMIALS

  • Kim, Seon-Hong
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.175-183
    • /
    • 2012
  • Let $\mathcal{P}_n$ be the set of all monic integral self-reciprocal poly-nomials of degree n whose all zeros lie on the unit circle. In this paper we study the following question: For P(z), Q(z)${\in}\mathcal{P}_n$, does there exist a continuous mapping $r{\rightarrow}G_r(z){\in}\mathcal{P}_n$ on [0, 1] such that $G_0$(z) = P(z) and $G_1$(z) = Q(z)?.