• Title/Summary/Keyword: Q filter

Search Result 344, Processing Time 0.025 seconds

MORE GENERAL FORMS OF (∈, ∈ VQk) FUZZY FILTERS OF ORDERED SEMIGROUPS

  • Khan, Asghar;Muhammad, Shakoor;Khalaf, Mohammed M.
    • Honam Mathematical Journal
    • /
    • v.39 no.2
    • /
    • pp.199-216
    • /
    • 2017
  • In the paper [Y. B. Jun, B. Davvaz and A. Khan, Filters of ordered semigroups based on the fuzzy points, JIFS 24 (2013) 619-630]. Jun et al. discussed the notion of (${\in},{\in}{\vee}q_k$)-fuzzy left (resp., right) filters as a generalization of the notion of (${\in},{\in}{\vee}q$)-fuzzy left (resp., right) filters of ordered semigroups. In this article, we try to obtain a more general form that (${\in},{\in}{\vee}q_k$)-fuzzy left (resp., right) filters in ordered semigroups. The notion of (${\in},{\in}{\vee}q_k^{\delta}$)-fuzzy left (resp., right) filters is discussed, and several properties are investigated. Characterizations of an (${\in},{\in}{\vee}q_k^{\delta}$)-fuzzy left (resp., right) filter are established. A condition for an (${\in},{\in}{\vee}q_k^{\delta}$)-fuzzy left (resp., right) filter to be a fuzzy left (resp., right) filter is provided. The important achievement of the study with an (${\in},{\in}{\vee}q_k^{\delta}$)-fuzzy left (right) filter is that the notion of an (${\in},{\in}{\vee}q_k$)-fuzzy left ( right) filter and hence an (${\in},{\in}{\vee}q$)-fuzzy left (resp. right) filter are special cases of an (${\in},{\in}{\vee}q_k^{\delta}$)-fuzzy left (resp. right) filter, and thus several results in published papers are becoming corollaries of our results obtained in this paper.

IMPLICATIVE FILTERS OF R0-ALGEBRAS BASED ON FUZZY POINTS

  • Jun, Young-Bae;Song, Seok-Zun
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.669-687
    • /
    • 2012
  • As a generalization of the concept of a fuzzy implicative filter which is introduced by Liu and Li [3], the notion of (${\in}$, ${\in}{\vee}q_k$)-fuzzy implicative filters is introduced, and related properties are investigated. The relationship between (${\in}$, ${\in}{\vee}q_k$)-fuzzy filters and (${\in}$, ${\in}{\vee}q_k$)-fuzzy implicative filters is established. Conditions for an (${\in}$, ${\in}{\vee}q_k$)-fuzzy filter to be an (${\in}$, ${\in}{\vee}q_k$)-fuzzy implicative filter are considered. Characterizations of an (${\in}$, ${\in}{\vee}q_k$)-fuzzy implicative filter are provided, and the implication-based fuzzy implicative filters of an $R_0$-algebra is discussed.

NEW TYPES OF FUZZY BCK-FILTERS

  • Jun, Young-Bae
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.157-166
    • /
    • 2009
  • Using more general form of the notion of quasi-coincidence of a fuzzy point with a fuzzy subset, the notion of ($({\in},{\in}{\bigvee}q_{\kappa})$)-fuzzy BCK-filters is introduced, and related properties are investigated. Many characterizations of ($({\in},{\in}{\bigvee}q_{\kappa})$)-fuzzy BCK-filters are provided. Relations between an ($({\in},{\in}{\bigvee}q_{\kappa})$)-fuzzy BCK-filter and a fuzzy BCK-filter are established.

Filter- and Denuder-Based Organic Carbon Correction for Positive Sampling Artifacts

  • Hwang, InJo;Na, Kwangsam
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • This study describes (1) the impact of positive sampling artifacts caused by not only a filter-based sampling, but also a denuder-based sampling in the determination of particle-phase organic carbon (POC), (2) the effect of sample flow rate on positive artifacts, and (3) an optimum flow rate that provides a minimized negative sampling artifact for the denuder-based sampling method. To achieve the goals of this study, four different sampling media combinations were employed: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), (3) quartz filter and quartz filter behind Teflon filter (Q-QBT), and (4) quartz filter behind carbon-based denuder (Denuder-Q). The measurement of ambient POC was carried out in an urban area. In addition, to determine gas-phase OC (GOC) removal efficiency of the denuder, a Teflon filter and a quartz filter were deployed upstream and downstream of the denuder, respectively with varying sample flow rates: 5, 10, 20, and 30 LPM. It was found that Q-alone sampling configuration showed a higher POC than QBQ, Q-QBT, and Denuder-Q by 12%, 28%, and 23%, respectively at a sample flow rate of 20 LPM due to no correction for positive artifact caused by adsorption of GOC onto the filter. A lower quantity of GOC was collected from the backup quartz filter on QBQ than that from Q-QBT. This was because GOC was not in equilibrium with that adsorbed on the front quartz filter of QBQ during the sampling period. It is observed that the loss of particle number and mass across the denuder increases with decreasing sample flow rate. The contribution o f positive arti facts to POC decreased with increasing sample flow rate, showing 29%, 25%, and 22% for 10, 20, and 30 LPM, respectively. The 20 LPM turns out to be the optimum sample flow rate for both filter and denuder-based POC sampling.

A Study on Tuning Factor(δ) and Quality Factor(Q) Values in Design of Single-Tuned Passive Harmonic Filters (단일동조 수동고조파필터 설계시의 동조계수(δ) 및 양호도(Q)값 연구)

  • Cho, Young-Sik;Cha, Han-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • This paper presents how to decide on tuning factor(${\delta}$) and quality factor(Q) values in design of single-tuned passive harmonic filters. Tuning factor(${\delta}$) and quality factor(Q) values have to consider before decision on circuit parameters of passive filters. A Study on these two value has not been scarcely performed and only experienced values has been used in passive harmonic filter design by far. As a experienced value, in cases of 5th and 7th filter, tuning factor(${\delta}$) is about 0.94 and 0.96 respectively and quality factor(Q) is, in all cases of, 50. If Single-tuned passive harmonic filter will be off-tuned, performance of filter will be decreased steeply and occur to parallel resonance between system reactance and filter capacitance. Therefore During the operation, In order not to off-tuning, Filter must be tuned at former order than actual tuning order. This is the same that total impedance of filter must have a reactive impedance. In this paper, Tuning factor(${\delta}$) is decided via example of real system and using the bode-plot and then performance of filters confirmed by filter current absorbtion rate. And Quality factor(Q) decided using the bode plot in example system and then performance of filters confirmed by filter current absorbtion rate also, which makes a calculated filter parameters to satisfy IEEE-519 distortion limits. Finally, Performance of the designed passive harmonic filter using the tuning factor(${\delta}$) and quality factor(Q) values, decided in this paper is verified by experiment and shows that 5th, 7th, 9th, 11th and 13th current harmonic distortions are decreased within IEEE-519 distortion limits, respectively.

Filter-based Correction for Positive Sampling Artifacts in the Determination of Ambient Organic Carbon (여과지를 이용한 유기탄소의 측정 오차 보정)

  • Kang, Byung-Wook;Yeon, Ik-Jun;Cho, Byung-Yeol;Park, Sang-Chan;Lee, Hak-Sung;Jeon, Jun-Min;Na, Kwang-Sam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.63-72
    • /
    • 2011
  • This study describes the impact of positive sampling artifact caused by a filter-based sampling in the determination of ambient organic carbon (OC). Three different sampling media combinations were employed for this investigation: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), and (3) quartz filter and quartz filter behind Teflon filter (Q-QBT). The measurement of ambient OC was carried out at a semi-urban site near oceanside at the end of November of 2008. It was found that Q-alone sampling configuration resulted in a higher OC than QBQ and Q-QBT by 14% and 28%, respectively due to no correction for positive artifact caused by adsorption of gas-phase OC onto the filter. A lower quantity of OC was collected from the backup quartz filter on QBQ than that from Q-QBT. A possible explanation is that the front quartz filter of QBQ was not fully saturated with gas-phase OC during the sampling period, allowing smaller amount of gas-phase OC to reach the backup quartz filter. The contribution of positive artifact to $PM_{2.5}$ mass was approximately 2.15 ${\mu}g/m^3$ which is equivalent to 6% in terms of Q-QBT sampling configuration. The positive artifact was found to be more dominated during summer than during winter, showing temperature dependence. It was concluded that Q-QBT sampling configuration offers less impact of positive artifact on ambient OC sampling than QBQ in quantification of OC.

Tunable Q-factor 2-D Discrete Wavelet Transformation Filter Design And Performance Analysis (Q인자 조절 가능 2차원 이산 웨이브렛 변환 필터의 설계와 성능분석)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • The general wavelet transform has profitable property in non-stationary signal analysis specially. The tunable Q-factor wavelet transform is a fully-discrete wavelet transform for which the Q-factor Q and the asymptotic redundancy r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The transform is based on a real valued scaling factor and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its over-sampling rate, with modest over-sampling rates being sufficient for the analysis/synthesis functions to be well localized. This paper describes filter design of 2D discrete-time wavelet transform for which the Q-factor is easily specified. With the advantage of this transform, perfect reconstruction filter design and implementation for performance improvement are focused in this paper. Hence, the 2D transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. Therefore, application for performance improvement in multimedia communication field was evaluated.

BCK- lters Based on Fuzzy Points with Threshold

  • Jun, Young-Bae;Song, Seok-Zun;Roh, Eun-Hwan
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.11-28
    • /
    • 2011
  • The notions of ($\overline{\in}$, $\overline{\in}{\vee}\overline{qk}$)-fuzzy BCK-filters and fuzzy BCK-filters with thresholds are introduced, and several related properties are investigated. Characterizations of such notions are displayed, and implication-based fuzzy BCK-filters are discussed.

A Study on the Influence of Q-filter on Disturbance Observer Controller for Electro-Magnetic Suspension Systems (자기부상시스템의 외란관측기 제어기에 Q 필터가 미치는 영향에 관한 연구)

  • Jeon, Chanyoung;Jang, Sohyun;Jo, Nam-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.104-110
    • /
    • 2015
  • The disturbance observer (DOB) controller has been widely used in various industrial applications since it is capable of achieving robust stability and disturbance rejection. In this paper, we study the effect of Q-filter on disturbance observer controller for Electro-Magnetic suspension (EMS) systems. We consider three Q-filters and analyze their effects on the robust stability against parameter uncertainties due to mass variation. Moreover, we investigate the influence of sensor noise for three Q-filters. According to our study, robust stability improves as the order of Q-filter decreases. On the other hand, the larger the order of Q-filter, the more the effect of sensor noise can be removed.

Performance and Robustness of Discrete Perturbation Observer

  • Sangjoo Kwon;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.31.5-31
    • /
    • 2001
  • In conventional perturbation estimators such as disturbance observers(DOB) [1, 2] or time-delayed controllers(TDC) [3{5}, the low pass filter(so-called Q-filter) plays an important role in the stability and performance. However, a general design guideline or analysis for the Q-filter has not been researched yet. In this paper, a guideline for the design of discrete Q-filter is suggested in terms of the analysis of the relationship between the filter parameters and stability performance robustness in discrete-time domain. The analysis clarifies the discrete-time effect of the perturbation estimator and provides a transparent relationship between performance and robustness depending ...

  • PDF