• Title/Summary/Keyword: Pyrolysis-oil

Search Result 250, Processing Time 0.02 seconds

Liquefaction Characteristics of HDPE by Pyrolysis (HDPE의 열분해에 의한 액화 특성)

  • 유홍정;이봉희;김대수
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.84-89
    • /
    • 2003
  • Pyrolysis of high density polyethylene(HDPE) was carried out to find the effects of temperature and time on the pyrolysis. The starting temperature and activation energy of HDPE pyrolysis increased with increasing heating rate. In general, conversion and liquid yield continuously increased with pyrolysis temperature and pyrolysis time. This tendency is very sensitive with pyrolysis time, especially at 45$0^{\circ}C$. Pyrolysis temperature has more influence on the conversion than pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HDPE pyrolysis at 45$0^{\circ}C$ was in the order of light oil > wax > kerosene > gasoline, and at 475$^{\circ}C$ and 50$0^{\circ}C$, it was wax > light > oil > kerosene > gasoline.

Compilation of liquefaction and pyrolysis method used for bio-oil production from various biomass: A review

  • Ahmad, Syahirah Faraheen Kabir;Ali, Umi Fazara Md;Isa, Khairuddin Md
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.18-28
    • /
    • 2020
  • In this paper the authors provide comparative evaluation of current research that used liquefaction and pyrolysis method for bio-oil production from various types of biomass. This paper review the resources of biomass, composition of biomass, properties of bio-oil from various biomass and also the utilizations of bio-oil in industry. The primary objective of this review article is to gather all recent data about production of bio-oil by using liquefaction and pyrolysis method and their yield and properties from different types of biomass from previous research. Shortage of fossil fuels as well as environmental concern has encouraged governments to focus on renewable energy resources. Biomass is regarded as an alternative to replace fossil fuels. There are several thermo-chemical conversion processes used to transform biomass into useful products, however in this review article the focus has been made on liquefaction and pyrolysis method because the liquid obtained which is known as bio-oil is the main interest in this review article. Bio-oil contains hundreds of chemical compound mainly phenol groups which make it suitable to be used as a replacement for fossil fuels.

Pyrolysis Characteristics of Oil Shale (Oil shale의 열분해 특성 연구)

  • Roh, Seon Ah;Yun, Jin Han;Keel, Sang In;Lee, Jung Kyu;Kim, Han Seok
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.365-370
    • /
    • 2018
  • Oil shale is the sedimentary rock containing kerogen, which is one of the abundant unconventional fuel. In the pyrolysis process, oil, gas and coke are produced from the decomposition of oil shale. In this study, TGA and the continuous pyrolysis of oil shale have been investigated for the clean conversion of oil shale. Effects of reaction temperature and residence time on the pyrolysis conversion and oil production rate have been determined. Conversion of oil shale increases with increasing the reaction temperature and residence time. Optimum conditions for oil production were reaction temperature of $450{\sim}500^{\circ}C$ at the residence time of 30 min.

Characteristics of Bio-oil by Pyrolysis with Pig Feces (돈분을 이용한 열분해공정 바이오오일의 특성)

  • Kun, Zhu;Choi, Hong L.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • The characteristics of the bio-oil produced by the pyrolysis process with pig feces was investigated in this paper. The continuous auger-type reactor produced bio-oil was maintained at the temperature range of 400 to $600^{\circ}C$, which was higher than a typical that in a conventional pyrolysis system. The pig feces was used as the feedstock. The bio-oil and its compositions were characterized by water analysis, heating values, elemental analysis, bio-oil compounds, by Gas Chromatography/Mass Spectrometry (GC/MS), and functional group by $^1H$ NMR spectroscopy. It was found that the maximum bio-oil yields of 21% w.t. was achieved at $550^{\circ}C$. This result suggested that this auger reactor might be a potential technology for livestock waste treatment to produce bio-oil because it is able to be improved to reach higher efficiency of bio-oil production in further study. The pyrolysis system reported herein had low heat transfer into the feedstock in the auger reactor so that it needs improve the heat conduction rate of the system in further study.

  • PDF

Fire and Explosion Hazards and Safety Management Measures of Waste Plastic-to-Pyrolysis Oil Conversion Process (폐플라스틱 열분해 유화 공정의 화재·폭발 위험성 및 안전관리 방안)

  • Dong-Hyun Seo;Yi-Rac Choi;Jin-Ho Lim;Ou-Sup Han
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.22-33
    • /
    • 2023
  • The number of fire and explosion accidents caused by pyrolysis oil and gas at waste plastic pyrolysis plants is increasing, but accident status and safety conditions have not been clearly identified. Therefore, the aim of the study was to identify the risks of the waste plastic pyrolysis process and suggest appropriate safety management measures. We collected information on 19 cases of fire and explosion accidents that occurred between 2010 and 2021 at 26 waste plastic pyrolysis plants using the Korea Occupational Safety and Health Agency (KOSHA) database and media reports. The mechanical, managerial, personnel-related, and environmental problems within a plant and problems related to government agencies and the design, manufacturing, and installation companies involved with pyrolysis equipment were analyzed using the 4Ms of Machines, Management, Man, and Media, as well as the System-Theoretic Accident Model and Processes (STAMP) methodology for seven accident cases with accident investigation reports. Study findings indicate the need for establishing legal and institutional support measures for waste plastic pyrolysis plants in order to prevent fire and explosion accidents in the pyrolysis process. In addition, ensuring safety from the design and manufacturing stages of facilities is essential, as are measures that ensure systematic operations after the installation of safety devices.

Catalytic Fast Pyrolysis of Tulip Tree (Liriodendron) for Upgrading Bio-oil in a Bubbling Fluidized Bed Reactor

  • Ly, Hoang Vu;Kim, Jinsoo;Kim, Seung-Soo;Woo, Hee Chul;Choi, Suk Soon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2020
  • The bio-oil produced from the fast pyrolysis of lignocellulosic biomass contains a high amount of oxygenates, causing variation in the properties of bio-oil, such as instability, high acidity, and low heating value, reducing the quality of the bio-oil. Consequently, an upgrading process should be recommended ensuring that these bio-oils are widely used as fuel sources. Catalytic fast pyrolysis has attracted a great deal of attention as a promising method for producing upgraded bio-oil from biomass feedstock. In this study, the fast pyrolysis of tulip tree was performed in a bubbling fluidized-bed reactor under different reaction temperatures, with and without catalysts, to investigate the effects of pyrolysis temperature and catalysts on product yield and bio-oil quality. The system used silica sand, ferric oxides (Fe2O3 and Fe3O4), and H-ZSM-5 as the fluidized-bed material and nitrogen as the fluidizing medium. The liquid yield reached the highest value of 49.96 wt% at 450 ℃, using Fe2O3 catalyst, compared to 48.45 wt% for H-ZSM-5, 47.57 wt% for Fe3O4 and 49.03 wt% with sand. Catalysts rejected oxygen mostly as water and produced a lower amount of CO and CO2, but a higher amount of H2 and hydrocarbon gases. The catalytic fast pyrolysis showed a high ratio of H2/CO than sand as a bed material.

Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine (목질 열분해유의 디젤 엔진 적용성 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Lim, Gi-Hun;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

A study on the recovery of useful components from waste tire (폐타이어로부터 유용성분의 회수에 관한 연구)

  • 이덕수
    • Journal of environmental and Sanitary engineering
    • /
    • v.9 no.2
    • /
    • pp.88-100
    • /
    • 1994
  • A study on the recovery of useful components from waste tire. This study was carried out investigate the recovery of fuel oil condensed from gases formed in the pyrolysis of waste tire. Energy to require the pyrolysis of waste tire was used the heat that was produced by the combustion of the gases from the pyrolysis of waste tire itself. The results are as follows; 1. Energy to require forming the fuel oil by the pyrolysis of waste tire was used only 1/6 quantities of waste tire for forming fuel oil. 2. The formed fuel oil were light oil, Kerosene and gasoline 3. The pollutants of combustion gas of patronizable gases was lower than standard Value.

  • PDF

Liquefaction Characteristics of HDPE, PP and PS by Isothermal Pyrolysis (HDPE, PP 및 PS의 등온열분해에 의한 액화 특성)

  • Yu, Hong-Jeong;Park, Su-Yul;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.198-205
    • /
    • 2002
  • Isothermal pyrolysis of high density polyethylene(HDPE), polypropylene(PP) and polystyrene(PS) was performed at $450^{\circ}C$, respectively. The effect of pyrolysis time on yield and product composition was investigated. Conversion and liquid yield obtained during HDPE pyrolysis continuously increased with time up to 80minutes, but those of PP and PS did not largely change after 35minutes. Each liquid product formed during the pyrolysis was classified into gasoline, kerosene, light oil and wax according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The major liquid product of HDPE pyrolysis was light oiH34 wt.% based on the amount of HDPE treated) and the amounts of the other liquid ingredients(gasoline, kerosene and wax) were almost the same. On the other hand, the pyrolysis of PP produced 27 wt.% gasoline, 22 wt.% kerosene, 24 wt.% light oil and 13wt.% wax, and the pyrolysis of PS produced 56 wt.% gasoline, 12 wt.% kerosene, 9 wt.% light oil and 13 wt.% wax.

Hydrogen Production from Pyrolysis Oil of Waste Plastic on 46-3Q Catalyst (46-3Q 촉매 상에서 폐플라스틱의 열분해 오일로부터 수소 제조 )

  • SEUNGCHEOL SHIN;HANEUL JUNG;DANBEE HAN;YOUNGSOON BAEK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.601-607
    • /
    • 2023
  • Pyrolysis oil (C5-C20) produced using plastic non-oxidative pyrolysis technology produces naphtha oil (C5-C10) through a separation process, and naphtha oil produces hydrogen through a reforming reaction to secure economic efficiency and social and environmental benefits. In this study, waste plastic pyrolysis oil was subjected to a steam reforming reaction on a commercialized catalyst of 46-3Q And it was found that the 46-3Q catalyst reformed the pyrolysis oil to produce hydrogen. Therefore, an experiment was performed to increase hydrogen yield and minimize the byproduct of ethylene. The reaction experiment was performed using actual waste plastic oil (C8-C11) with temperature, steam/carbon ratio (S/C) ratio, and space velocity as variables. We studied reaction conditions that can maximize hydrogen yield and minimize ethylene byproducts.