• Title/Summary/Keyword: Pyrolysis characteristics

Search Result 406, Processing Time 0.024 seconds

Utilization and Quality Standard of Fast Pyrolysis Bio-Oil (급속 열분해 바이오 오일의 활용 및 품질기준)

  • PARK, JO YONG;DOE, JIN-WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.223-233
    • /
    • 2020
  • Fast pyrolysis is one of the most promising technologies for converting biomass to liquid fuels. Pyrolysis bio-oil can replace petroleum-based fuels used in various thermal conversion devices. However, pyrolysis bio-oil is completely different from petroleum fuels. Therefore, in order to successfully use pyrolysis bio-oil, it is necessary to understand the fuel characteristics of pyrolysis bio-oil. This paper focuses on fuel characteristics and upgrading methods of pyrolysis bio-oil and discusses how these fuel characteristics can be applied to the use of pyrolysis bio-oils. In addition, the fuel quality standards of fast pyrolysis bio-oil were examined.

Preparation of Green-Light Emitting BAM:Mn Phosphor Particles by High Temperature Spray Pyrolysis (고온 분무열분해 공정에 의한 녹색 발광의 BAM:Mn 형광체 합성)

  • Ju Seo Hee;Koo Hye Young;Kim Do Youp;Kang Yun Chan
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.496-502
    • /
    • 2005
  • Green-light emitting $BaMgAl_{10}O_{19}:Mn^{2+}$ (BAM:Mn) phosphor particles were prepared by spray Pyrolysis. The effect of reactor temperature and flow rate of carrier gas in the spray Pyrolysis on the morphology, crystallinity and photoluminescence characteristics under vacuum ultraviolet were investigated. The morphology of the as-Prepared Particles obtained by spray Pyrolysis had spherical shape and non-aggregation characteristics regardless of the reactor temperature. The spherical shape of the as-prepared Particles obtained by spray pyrolysis at low temperature disappeared after Post-treatment. On the other hand the as-Prepared Particles obtained by spray Pyrolysis at $1600^{\circ}C$ maintained spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ for 3 h under reducing atmosphere. The BAM:Mn Phosphor Particles Prepared by spray Pyrolysis at different reactor temperatures had pure crystal structure and high photoluminescence intensities under vacuum ultraviolet after post-treatment. BAM:Mn phosphor particles prepared by spray Pyrolysis at low How rate of carrier gas had complete spherical shape and filed morphology and high photoluminescence intensity after post-treatment under reducing atmosphere.

Analysis on the Pyrolysis Characteristics of Waste Plastics Using Plug Flow Reactor Model (Plug Flow Reactor 모델을 이용한 폐플라스틱의 열분해 특성 해석)

  • Sangkyu, Choi;Yeonseok, Choi;Yeonwoo, Jeong;Soyoung, Han;Quynh Van, Nguyen
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.12-21
    • /
    • 2022
  • The pyrolysis characteristics of high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) were analyzed numerically using a 1D plug flow reactor (PFR) model. A lumped kinetic model was selected to simplify the pyrolysis products as wax, oil, and gas. The simulation was performed in the 400-600℃ range, and the plastic pyrolysis and product generation characteristics with respect to time were compared at various temperatures. It was found that plastic pyrolysis accelerates rapidly as the temperature rises. The amounts of the pyrolysis products wax and oil increase and then decrease with time, whereas the amount of gas produced increases continuously. In LDPE pyrolysis, the pyrolysis time was longer than that observed for other plastics at a specified temperature, and the amount of wax generated was the greatest. The maximum mass fraction of oil was obtained in the order of HDPE, PP, and LDPE at a specified temperature, and it decreased with temperature. Although the 1D model adopted in this study has a limitation in that it does not include material transport and heat transfer phenomena, the qualitative results presented herein could provide base data regarding various types of plastic pyrolysis to predict the product characteristics. These results can in turn be used when designing pyrolysis reactors.

THE FAST PYROLYSIS CHARACTERISTICS OF LIGNOCELLULOSIC BIOMASS IN A BUBBLING FLUIDIZED BED REACTOR (기포 유동층 반응기내 목질계 바이오매스의 급속열분해 특성)

  • Choi, Hang-Seok
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.94-101
    • /
    • 2011
  • The fast pyrolysis characteristics of lignocellulosic biomass are investigated for a bubbling fluidized bed reactor by means of computational fluid dynamics (CFD). To simulate multiphase reacting flows for gases and solids, an Eulerian-Eulerian approach is applied. Attention is paid for the primary and secondary reactions affected by gas-solid flow field. From the result, it is scrutinized that fast pyrolysis reaction is promoted by chaotic bubbling motion of the multiphase flow enhancing the mixing of solid particles. In particular, vortical flow motions around gas bubbles play an important role for solid mixing and consequent fast pyrolysis reaction. Discussion is made for the time-averaged pyrolysis reaction rates together with time-averaged flow quantities which show peculiar characteristics according to local transverse location in a bubbling fluidized bed reactor.

Morphology and Photoluminescence Characteristics of Halophosphate Phosphor Particles by Spray Pyrolysis and Flame Spray Pyrolysis

  • Sohn, Jong-Rak;Kang, Yun-Chan;Park, Hee-Dong;Yoon, Soon-Gil
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.803-806
    • /
    • 2002
  • Flame spray pyrolysis was applied to improve the photoluminescence characteristics of blue-emitting $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles with high brightness for the application to LED phosphor. $Sr_5(PO_4)_3Cl:Eu^{2+}$ prepared from conventional spray pyrolysis had poor PL intensity than that of commercial products under long-wavelength ultraviolet(UV). $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles prepared by flame spray pyrolysis had PL intensity as same as that of commercial products under long-wavelength UV. Hollow morphology and porous structure of the particles prepared by the flame spray pyrolysis disappeared after posttreatment. Even though the $Sr_5(PO_4)_3Cl:Eu^{2+}$ phosphor particles prepared by the flame spray pyrolysis had irregular shape, the particles had dense structure and clear surface property.

  • PDF

A Study on Development of a Pyrolysis Characteristics for Combustible Ocean waste (가연성 해양폐기물 열분해 특성에 대한 연구)

  • 김용섭;김도영;황기연
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.130-134
    • /
    • 2001
  • Recently environmental pollution at sea becomes serious, so every governmental organization makes its effort to solve this problem. Combustible ocean wastes as of ropes, fishing nets, and tires are usually highly polymerized compound materials. The problem of ocean waste treatment can be solved by using the pyrolysis method. Pyrolysis characteristics of ocean waste was examined to get the basic data for the production system of fuel from the ocean waste. Thermogravimetric experiment showed that residual mass rate decreases as the velocity of temperature-rising becomes lower. The pyrolysis of waste rope and fishing net occurs at 300~450$^{\circ}C $ and the waste tire does at 350~450$^{\circ}C $. Pyrolysis time is estimated about 15 to 20 minutes in the temperature range when lively act of pyrolysis temperature reached.

  • PDF

Liquefaction Characteristics of HDPE and LDPE in Low Temperature Pyrolysis (저온 열분해시 HDPE 및 LDPE의 액화 특성)

  • Lee, Bong-Hee;Park, Su-Yul;Kim, Ji-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.307-318
    • /
    • 2006
  • The pyrolysis of high density polyethylene(HDPE) and low density polyethylene(LDPE) was carried out at temperature between 425 and $500^{\circ}C$ from 35 to 80 minutes. The liquid products formed during pyrolysis were classified into gasoline, kerosene, gas oil and wax according to the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. The conversion and yield of liquid products for HDPE pyrolysis increased continuously according to pyrolysis temperature and pyrolysis time. The influence of pyrolysis temperature was more severe than pyrolysis time for the conversion of HDPE. For example, the liquid products of HDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 30wt.% gas oil, 15wt.% wax, 14wt.% kerosene and 11wt.% gasoline. The increase of pyrolysis temperature up to $500^{\circ}C$ showed the increase of wax product and the decrease of kerosene. The conversion and yield of liquid products for LDPE pyrolysis continuously increased according to pyrolysis temperature and pyrolysis time, similar to HDPE pyrolysis. The liquid products of LDPE pyrolysis at $450^{\circ}C$ for 65 minutes were ca. 27wt.% gas oil, 18wt.% wax, 16wt.% kerosene and 13wt.% gasoline.

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor (분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성)

  • Park, Hoon Chae;Lee, Byeong-Kyu;Kim, Hyo Sung;Choi, Hang Seok
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.

A study on the Chlorine removal characteristics of Plastics in a Lab-scale Pyrolysis reactor (실험실 규모 열분해로에서의 플라스틱 탈염 특성 연구)

  • Park, Ju-Won;Park, Sang-Shin;Yang, Won;Yu, Tae-U
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.155-160
    • /
    • 2007
  • This study was conducted to find out the chlorine removal characteristics of waste plastic mixture by pyrolysis process with thermogravimetric analysis(TGA) and a lab-scale pyrolyzer. The material used as plastic wastes were PE (Poly-ethylene), PP (Poly-prophylene), and PVC (Poly Vinyl Chloride). Experimental procedure were composed of three steps; 1st step: TGA of PVC, PP and PE, 2nd step: chlorine removal rate of PVC in a lab-scale pyrolyzer, 3rd step: chlorine removal rate of PVC-PE and PVC-PP mixture in a pyrolyzer. Through the results of TGA, we can estimate the basic pyrolysis characteristics of each plastic, and then we can also derive the design parameters and operating conditions of the lab-scale pyrolyzer. The results can be used as primary data for designing a system to produce RPF (Refuse Plastic Fuel), a waste incinerator and a pyrolysis/gasification process.

  • PDF

COMBUSTION CHARACTERISTICS OF WASTE-PYROLYSIS GASES IN AN INTERNAL COMBUSTION ENGINE

  • Shudo, T.;Nagano, T.;Kobayashi, M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Wastes such as shredder dust of disposed vehicles can be decomposed into low calorific flammable gases by Pyrolysis gasification. A stationary electric Power generation using an internal combustion engine fuelled with the waste-pyrolysis gas is an effective way to ease both waste management and energy saving issues. The waste-pyrolysis gas mainly consists of H$_2$, CO, $CO_2$ and $N_2$. The composition and heating value of the gas generated depend on the conversion process and the property of the initial waste. This research analyzed the characteristics of the combustion and the exhaust emissions in a premixed charge spark ignition engine fuelled with several kinds of model gases, which were selected to simulate the pyrolysis-gases of automobile shredder dusts. The influences of the heating value and composition of the fuel were analyzed parametrically. Furthermore, optical analyses of the combustion flame were made to study the influence of the fuel's inert gas on the flame propagation.