• Title/Summary/Keyword: Pyroelectric coefficient

Search Result 63, Processing Time 0.024 seconds

A study on the Frequency Dependence of Dynamic Pyroelectric Properties for $Pb_{l-x}La_{x}Ti_{l-x/4}O_3$ (x=0.1) (PLT(10)) Ferroelectric Thin Film ($Pb_{l-x}La_{x}Ti_{l-x/4}O_3$ (x=0.1) (PLT(10)) 강유전체 박막에서 동적 초전특성의 주파수의존성에 관한 연구)

  • 차대은;장동훈;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1008-1015
    • /
    • 2002
  • The fabricated La-modified lead titanate (PLT) thin film without poling treatment was investigated for modulation frequency dependence of pyroelectric properties by the dynamic method. $Pb_{l-x}La_{x}Ti_{l-x/4}O_3$(x=0.1) (PLT(10)) thin film haying 10 mol% La content was deposited on a Pt/$TiO_{x}$/$SiO_2$/Si substrate by sol-gel method. The PLT(10) thin film exhibits a relatively excellent dielectric property. The pyroelectric coefficient (p) of the PLT(10) thin film is 6.6 x $10^{-9}C$$textrm{cm}^2$$.$K without frequency dependence. The figure of merits for the voltage responsivity and specific detectivity are 1.03 x $10^{-11}C$.cm/J and 1.46 x $10^{-10}C$.cm/J, respectively The PLT(10) thin film has voltage responsivity (RV) of 5.IS V/W at 8 Hz. Noise equivalent power (NEP) and specific detectivity ($D^{*}$) of the PLT(10) thin film are 9.93 x $10^{-8}$W/$Hz^{1/2}$ and 1.81 x $10^{6}$cm.$Hz^{1/2}$/W at the same frequency of 100 Hz,, respectively The results means that PLT thin film having 10 mol% La content is suitable for the sensing materials of pyroelectric IR sensors.

Dynamic Pyroelectric Properties of The $Pb(Zr_{0.9}Ti_{0.1})O_3$ Ceramics ($Pb(Zr_{0.9}Ti_{0.1})O_3$ 세라믹 Dynamic 초전특성에 관한 연구)

  • Min, Kyung-Jin;Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.8
    • /
    • pp.28-34
    • /
    • 2000
  • Pyroelectric properties of the $Pb(Zr_{0.9}Ti_{0.1})O_3$ ceramics having the rhombohedral structure have been studied by using the dynamic measurement method. The pyroelectric responses of the $Pb(Zr_{0.9}Ti_{0.1})O_3$ ceramics are characterized in both low and high medulation frequency regions and their frequency depences are observed. In the low frequency region (2~200Hz), the change of polarization increases and shows the maximum since the reorientation rate of domains is higher than the modulation frequency. Inthe high frequency region (200~2000Hz), the pyroelectrci response decreases as the frequency increases, because the reorientation of domains is suppressed and so the change of polarization decreases. Pyroelectric coefficient, figure of merit, noise equivalent power and detectivity of the $Pb(Zr_{0.9}Ti_{0.1})O_3$ ceramics are measured as $1.6{\times}10^{-8}C/cm^2{\cdot},\;1.6{\times}10^{-11}C{\cdot}cm/J,\;2.4{\times}10^{-7}W/Hz^{1/2}\;and\;4.17{\times}10^6cm{\cdot}Hz^{1/2}/W$, respectively.

  • PDF

Dielectrical and Pyroelectrical Properties of $Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Zr_xTi_{1-x})O_3$ Compound Ceramics ($Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Zr_xTi_{1-x})O_3$세라믹의 유전 및 초전 특성)

  • 이성갑;조현무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.796-801
    • /
    • 2001
  • Ferroelectric 0.05PZN-xPZT(90/10)-(0.95-x)PZT(10/90) (x=0.65, 0.85) specimens were fabricated by the solid-state reaction method, and especially PZT(90/10) and PZT(10/90) powders were derived by the sol-gel method. All specimens showed a uniform ferroelectric grain without the presence of the pyrocholre phase. Average grain size increased with an increased in sintering temperature, the values for the x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 14.4$\mu$m and 9.8$\mu$m, respectively. The dielectric constant and dielectric loss of the x=0.65 specimen sintered at 125$0^{\circ}C$ were 1247. 2.06%, respectively. The coercive field and the remanent polarization of x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 8.5kV/cm, 13$\mu$C/$\textrm{cm}^2$ and 17.2kV/cm, 28 $\mu$C/$\textrm{cm}^2$, respectively. The pyroelectric coefficient of the x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 5.64$\times$10$^{-8}$ C/$\textrm{cm}^2$K and 2.76$\times$10$^{-8}$ C/$\textrm{cm}^2$K, respectively.

  • PDF

Structure and Pyroelectrical Properties of Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-Pb($Zr_{x}Ti_{1-x}$)$O_3$Compound Ceramics (Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-Pb($Zr_{x}Ti_{1-x}$)$O_3$ 세라믹의 구조적, 초전 특성)

  • 조현무;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.543-546
    • /
    • 2000
  • Ferroeleclric 0.05PZN-xPZT(90/10)-(0.95-x)PZT(10/90) (x=0.65, 0.85) specimens were fabricated by the mixed-oxide method and cold-pressing method using sol-gel derived PZT(90/10) and PZT(10/90) powders. All specimens show a uniform ferroelectric grain without the presence of the pyrocholre phase. Average grain size increased with an increase in sintering temperature, the value for the x=0.65 specimen sintered at 125$0^{\circ}C$ was 14.4$\mu$m. The dielectric constant and dielectric loss of the x=0.65 specimen sintered at 125$0^{\circ}C$ were 1247, 2.06%, respectively. All specimens showed fairly good temperature and frequency stability of dielectric constant with the range from -2$0^{\circ}C$ to 6$0^{\circ}C$ and 100Hz to 10MHz. The coercive field and the remanent polarization of x = 0.65 specimen sintered at 125$0^{\circ}C$ were 8.5 kV/cm and 13 $\mu$C/cm$^2$, respectively. The pyroelectric coefficient of the x=0.65 specimen sintered at 125$0^{\circ}C$ was 5.64$\times$10$^{-8}$ C/cm$^2$K, respectively.

  • PDF

Structural and Electrical Characteristics of Ferroelectric PLZT Thin Film Prepared on Pt Substrate by Sol-Gel Route (졸-겔법으로 백금 기판위에 제조된 PLZT 박막의 구조적, 전기적 특성변화)

  • 오영제;김태송;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.171-176
    • /
    • 1994
  • The spin-casted PLZT(9/65/35) thin films through polymeric sol-gel process were prepared on Pt substrate. The crack-free, uniform and dense films were obtained by post-annealing at the temperature between 35$0^{\circ}C$ and $700^{\circ}C$. The composite structure mixed together with large grains called "rosette" and surrounding small grains were observed on the films annealed over $600^{\circ}C$. Pyrochlore phase was completely changed to perovskite phase above $600^{\circ}C$ with the increase of annealing temperature. Dielectric constant (k) was larger with the increase of film thickness and annealing temperature. from the measurements of dielectric constant as a function of measuring temperature, it was also observed that Curie temperature was shifted to higher temperature with the increase of film thickness and annealing temperature. The pyroelectric coefficient(P) of 10 times coated film annealed at $700^{\circ}C$ was 65 $\mu$C/$\textrm{cm}^2$.K.$.K.

  • PDF

Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary (강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰)

  • Im, Sungbin;Bu, Sang Don;Jeong, Chang Kyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Effect of Seed-layer on the Crystallization and Electric Properties of SBN60 Thin Films (SBN60 박막의 결정화 및 전기적 특성에 관한 씨앗층의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Jo, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.723-727
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin film of $1000{\AA}$ was pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $3000{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800^{\circ}C$ in air, respectively The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was no difference in the crystal structure with heat-treatment temperature, but the electric properties depended on the heating temperature and was the best at $750^{\circ}C$. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15{\mu}C/cm^2$, the coercive field (Ec) 75 kV/cm, and the dielectric constant 1075, respectively.

  • PDF

Effect of Seed-layer on the Crystallization and Electric Properties of SBN60 Thin Films (SBN60 박막의 결정화 및 전기적 특성에 관한 씨앗층의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Jo, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.85-88
    • /
    • 2003
  • $Sr_xBa_{1-x}Nb_2O_6$(SBN, $025{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in Ar/$O_2$ atmosphere. SBN30 thin film of 500 ${\AA}$ was pre-deposited as a seed layer on Pt(l00)/$TiO_2$/$SiO_2$/Si substrate followed by SBN60 deposition up to 4500 ${\AA}$ in thickness. SBN60/SBN30 layer was deposited at different Oxygen amount of 0, 8.1, 17, and 31.8 sccm, respectively. The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. The crystal structure and the electric properties depended on the Oxygen amount, heating temperature and was the best at O2 = 8.1 seem, $750^{\circ}C$. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was 13 ${\mu}C/cm^2$, the coercive field (Ec) 75 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

Effect of Seed-layer thickness on the Crystallization and Electric Properties of SBN Thin Films. (SBN 박막의 결정화 및 전기적 특성에 관한 씨앗층 두께의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin films of different thickness were pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $4500\;{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800\;^{\circ}C$ in air, respectively, The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was difference in the crystal structure with heat-treatment temperature, and the electric properties depended on the heating temperature and the seed-layer thickness. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15\;{\mu}C/cm^2$, the coercive field (Ec) 65 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

Crystallization and Electrical Properties of SBM Thin Films by IBSD Process (IBSD법에 의한 SBN60 강유전체 박막의 배향 및 전기적 특성)

  • Jeong, Seong-Won;Jang, Jae-Hoon;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.869-873
    • /
    • 2004
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient, piezoelectric, and a photo refractive properties. In this study, SBN60(x=0.6) thin film was manufactured by ion beam sputtering technique. Using the prepared SBN60 target in $Ar/O_2$ atmosphere as-deposited SBN60 thin film on Pt(100)/$TiO_2/SiO_2/Si$ substrate crystallization and orientation behavior as well as electric properties of SBN60 thin film were examined. SBN60 deposition up to $3000{\AA}$ in thickness, SBN60 thin film was heat-treated at $650^{\circ}C{\sim}800^{\circ}C$. The orientation was shown primarily along (001) plane from XRD pattern where working pressure was $4.3{\times}10^{-4}$ torr. The deposited layer was uniform, preferred orientatin and crystallization behavior resulted in the change of $O_2$ ratio was observed. In electric propertie of Pt/SBN60/Pt thin film capacitor remnant polarization (2Pr) value was $10{\mu}C/cm^2$, the coercive filed (Ec) 50 kV/cm, and the dielectric constant 615, respectively.

  • PDF