• Title/Summary/Keyword: Pyrene fluorescence

Search Result 72, Processing Time 0.017 seconds

Preparation of fluorescent nucleic acids generating unique emission by primer extension reaction using pyrene-labeled deoxyuridine triphosphate derivatives

  • Takada, Tadao;Tanimizu, Yosuke;Nakamura, Mitsunobu;Yamana, Kazushige
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.76-78
    • /
    • 2014
  • Fluorescent nucleic acids were prepared utilizing the polymerase extension (PEX) reaction to incorporate fluorescent molecules. 2'-Deoxyuridine triphosphate (dUTP) derivatives possessing pyrene molecules as fluorophores were synthesized using the aqueous-phase Sonogashira coupling between 5-Iodo-dUTP and acetylene-linked pyrene molecules. The incorporation of the pyrene (Py)-labeled deoxyuridine triphosphates (PyU) into DNA by polymerase was evaluated by polyacrylamide gel electrophoresis, demonstrating that the PyU can work as a good substrate for the PEX reaction. The fluorescent properties of the functionalized DNA prepared by the PEX reaction were characterized by steady-state fluorescence measurements. The Py-conjugated DNA showed typical emission spectra of the pyrene, and the DNA with two pyrene molecules connected to each other by a diethylene glycol linker exhibited a broadened emission attributed to the electronic interaction between the Py molecules.

Dynamic Research of a Potential Carrier for Hydrophobic Compound Model Pyrene Using Amphiphilic Peptide EYK

  • Wang, Liang;Zhao, Xiao-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.620-624
    • /
    • 2011
  • In recent years, the study of self-assembly peptide used in drug delivery system has been attracted great interest from scientists. In the category are self-assembly peptides in the structure either with one hydrophobic surface and another hydrophilic or a hydrophobic head and a hydrophilic tail. Here, we focus on a novel designed peptide EYK with double amphiphilic surfaces, investigating on the capability of peptide as a carrier for hydrophobic compound model pyrene. The fluorescence data presented the dynamic process of the transfer, showing that the pyrene was in the crystalline form in peptide solution, and molecularly migrated from its peptide encapsulations into the membrane bilayers when the peptide-pyrene suspension was mixed with liposome vesicles. The results indicated that the peptide EYK could stabilize hydrophobic pyrene in aqueous solution and delivered it into EPC liposome as a potential carrier.

Synthesis of Chemosensor Based on Pyrene and Study for Its Sensing Properties Toward Fluoride Ion

  • Kim, Hyungjoo;Li, Xiaochuan;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.153-158
    • /
    • 2013
  • In this study, pyrene based chemosensor was synthesized by two step reaction. The chemosensor showed that high selectivity toward fluoride in DMSO. The fluorescence intensity was drastically increased by binding between chemosensor and fluoride ion. Absorption and fluorescence spectra were obtained by UV-Vis spectrometer and fluorescence spectrophotometer. The binding ratio between chemosensor and fluoride ion was also investigated by job's plot method and Benesi-Hildebrand plot. The HOMO/LUMO energy levels and electron distribution were calculated and simulated by Material studio 6.0 Package.

Simple Pyrene Derivatives as Fluorescence Sensors for TNT and RDX in Micelles

  • Hong, Jung-Ho;Choi, Jung-Hwa;Cho, Dong-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3158-3162
    • /
    • 2014
  • Various pyrene derivatives were synthesized and systematically examined in micelles. Synthesized mono and bispyrene derivatives were tested in micelles so that they displayed a strong excimer band and the excimer band was quenched in the presence of TNT and RDX. In the optimized condition, the binding constant for TNT of a simple dipyrene derivative 4 was increased up to $1.0{\times}10^6M^{-1}$ in cetyl trimethylammonium bromide (CTAB) micelles, which allowed for the detection of 2 ppb of TNT and 334 ppb of RDX by fluorescence titrations.

Changes in Spectroscopic Characteristics and Pyrene Binding Reactivities of Dissolved Organic Matters By Biodegradation (생분해에 의한 용존 자연유기물질 분광특성 및 Pyrene 결합반응성 변화)

  • Park, Min-Hye;Hur, Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.893-899
    • /
    • 2008
  • Changes in spectroscopic characteristics and pyrene binding coefficients of terrestrial dissolved organic matters(DOM) were investigated during microbial incubation. The incubation studies were conducted for 21 days using a leaf litter DOM and a soilderived DOM with an inoculum from a river. The dissolved organic carbon(DOC), the specific UV absorbance(SUVA), the synchronous fluorescence spectra, and the pyrene organic carbon-normalized binding coefficient(K$_{oc}$) of the DOM were measured at the incubation days of 0, 3, 7, 14 and 21. After the 21-day incubation, DOC were reduced to 61% and 51% of the original concentrations of the litter DOM and the soil-derived DOM, respectively. Comparison of the spectroscopic characteristics before and after the incubation revealed that the SUVA, the fulvic-like fluorescence(FLF), the humic-like fluorescence(HLF) of the different DOM were enhanced by the incubation whereas the protein-like fluorescence(PLF) was reduced. This indicates that more aromatic and humic-like compounds were enriched during the biodegradation process while biodegradable and weak carbon structures were depleted. Irrespective of the DOM sources, SUVA values showed a positive relationship with pyrene K$_{oc}$ with a correlation coefficient of 0.97. The FLF and HLF also exhibited good correlations with K$_{oc}$ values although different regression equations were obtained from the different DOM. Our results suggest that the selected spectroscopic characteristics could be good estimation indices for the changes of the binding reactivity of DOM for hydrophobic organic contaminants during biodegradation process.

Determination of Amine Compounds Using 1-(N,N-Dimethylamino) pyrene-6-sulfonyl chloride as a New Fluorescent Derivatizing Reagent for HPLC (새로운 HPLC용 형광유도체화제인 1-(N,N-dimethylamino) pyrene-6-sulfonyl chloride를 이용한 아민화합물의 분석)

  • 이윤중;김용희;조정길
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.288-294
    • /
    • 1991
  • A new fluorescent derivatizing reagent was developed to be used in HPLC for the trace determination of primary and secondary amines. This new reagent, 1-(N,N-dimethylamino)pyrene-6-sulfonyl chloride, was synthesized by the chlorination of sodium 1-(N,N-dimethylamino)pyrene-6-sulfonate which was obtained from 1-(N,N-dimethylamino)pyrene after sulfonation. Ephedrine and norephedrine were derivatized quantitatively by this reagent. The optimum conditions for the derivatization such as pH, reagent concentration, reaction time and reaction temperature ware examined. The structures of derivatives were identified by IR, $^{1}$H-NMR and MS methods. The fluorescence properties and the stability of the derivatives were examined. The derivatives were separated on silica column with an isocratic elution using the mixture of n-hexane and ethylacetate and monitored by fluorescene detector. Linear calibration curves were obtained and detection limits in a 10 $\mu$l injection volume were 5 picomole for ephedrine and norephedrine.

  • PDF

Synthesis and Property of Pyrene-Naphthalene Diimide-Pyrene Triad (Pyrene-Naphthalene Diimide-Pyrene Triad의 합성 및 물성에 대한 연구)

  • Kim, Hyunji;Kim, A-Rong;Park, Jong S.
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • In this study, we presented a newly synthesized pyrene-naphthalene diimide(NDI)-pyrene triad. The optical and structural properties were examined using various characterization techniques. A donor-acceptor-donor triad molecule exhibited a strong charge transfer, though there existed neither intramolecular nor intermolecular hydrogen bonding sites, due to the formation of preferential complementary complex between pyrene and NDI. Powder XRD measurement revealed a sharp and distinctive X-ray patterns, indicating the presence of microcrystalline-like structure. POM images showed anisotropic fingerprint texture similar to that of cholesteric phase, and SEM images showed numerous columnar structures with length of 1 to $10{\mu}m$. Above observation clearly demonstrated that ${\pi}$-complementary NDI-pyrene interactions in the traid was strong enough to form columnar aggregates in the long range.

Thermosensitive Block Copolymers Consisting of Poly(N-isopropylacrylamide) and Star Shape Oligo(ethylene oxide)

  • Lee, Seung-Cheol;Chang, Ji-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1521-1525
    • /
    • 2009
  • Thermosensitive block copolymers of ethylene oxide and N-isopropylacrylamide (NIPAM) were synthesized. A five armed star shape oligo(ethylene oxide) initiator with a cyclotriphosphazene core was prepared and used for the atom transfer radical polymerization (ATRP) of NIPAM. The lower critical solution temperatures (LCSTs) of the copolymers were 36 to 46 ${^{\circ}C}$, higher than that of PNIPAM (32 ${^{\circ}C}$), depending on their molecular weights. The copolymers were soluble in water below the LCSTs but formed micelles above the LCSTs. The thermosensitive micellization behaviors of the polymers were investigated by fluorescence spectroscopy. With increasing the temperature of an aqueous solution of P2 and pyrene above the LCST, the peak of 333 nm red-shifted to appear around 339 nm and its intensity increased significantly, indicating the micelle formation. The transfer of pyrene into the micelles was also confirmed by a confocal laser scanning microscope. The fluorescence image obtained from P2 in an aqueous pyrene solution exhibited a green emission resulting from the pyrene transferred into the micelles. Salt effects on the solubility of the copolymers in an aqueous solution were investigated. The LCST of P2 decreased sharply as the concentration of sodium chloride increased, while decreased slowly with potassium chloride.

Polycyclic Aromatic Hydrocarbon (PAH) Binding to Dissolved Humic Substances (HS): Size Exclusion Effect

  • Hur, Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2004
  • Binding mechanisms of polycyclic aromatic hydrocarbons (PAHs) with a purified Aldrich humic acid (PAHA) and its ultrafiltration (UF) size fractions were investigated. Organic carbon normalized binding coefficient ($K_oc$) values were estimated by both a conventional Stern-Volmer fluorescence quenching technique and a modified fluorescence quenching method. Pyrene $K_oc$ values depended on PAHA concentration as well as freely dissolved pyrene concentration. Such nonlinear sorption-type behaviors suggested the existence of specific interactions. Smaller molecular size PAH (naphthalene) exhibited higher $K_oc$ value with medium-size PAHA UF fractions whereas larger size PAH (pyrene) had higher extent of binding with larger PAHA UF fractions. The inconsistent observation for naphthalene versus pyrene was well explained by size exclusion effect, one of the previously suggested specific mechanisms for PAH binding. In general, the extent of pyrene binding increased with lower pH likely due to the neutralization of acidic functional groups in HS and the subsequent increase in hydrophobic HS region. However, pyrene $K_oc$ results with a large UF fraction (>100K Da) corroborated the existence of the size exclusion effect as demonstrated by an increase in $K_oc$ values at a certain higher pH range. The size exclusion effect appears to be effective only for the specific conditions (HS size or pH) that render HS hole st겨ctures to fit a target PAH.