• Title/Summary/Keyword: Pyramid core

Search Result 19, Processing Time 0.03 seconds

A Study on the Compressive Characteristics of Sandwich Sheet with Pyramid Core in the Thickness Direction (피라미드 코어를 가진 샌드위치 판재의 두께 방향 압축 특성에 대한 연구)

  • Cho, K.C.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.635-640
    • /
    • 2006
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. However, low resistance to the compressive pressure in the thickness direction is a dominating factor in the formability of sandwich sheet. In this study, sandwich sheet with pyramid type core is considered. For the compressive characteristics in the thickness direction, experiments and finite element simulations are carried out. In the experiment, deformation behavior is observed and discussed as the compression proceeds. It is shown that a corresponding finite element simulation can give a reasonable agreement with experiment in terms of maximum pressure. However, simulation shows some discrepancy from the experiment in terms of compressive pressure-displacement characteristics. The reasons for this discrepancy are studied in the geometrical imperfectness of sandwich sheet. It is also observed that most of deformation is dominated by buckling mode of pyramid legs.

A SoC based on the Gaussian Pyramid (GP) for Embedded image Applications (임베디드 영상 응용을 위한 GP_SoC)

  • Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.664-668
    • /
    • 2010
  • This paper presents a System-On-a-chip (SoC) for embedded image processing and pattern recognition applications that need Gaussian Pyramid structure. The system is fully implemented into Field-Programmable Gate Array (FPGA) based on the prototyping platform. The SoC consists of embedded processor core and a hardware accelerator for Gaussian Pyramid construction. The performance of the implementation is benchmarked against software implementations on different platforms.

Design and Implementation of Image-Pyramid

  • Lee, Bongkyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1154-1158
    • /
    • 2016
  • This paper presents a System-On-a-chip for embedded image processing applications that need Gaussian Pyramid structure. The system is fully implemented into Field-Programmable Gate Array (FPGA) based on the prototyping platform. The SoC consists of embedded processor core and a hardware accelerator for Gaussian Pyramid construction. The performance of the implementation is benchmarked against software implementations on different platforms.

Deformation Pattern of the Pyramid-Core Welded Sandwich Sheet Metal in L-Bending (피라미드코어재를 갖는 접합판재의 L-굽힘가공 특성)

  • Kim, J.H.;Chung, W.J.;Cho, Y.J.;Kim, H.G.;Hong, M.J.;Yooe, J.S.;Seong, D.Y.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.316-319
    • /
    • 2008
  • The L-bending of inner-structure bonded sandwich sheet metal is examined by using a bending die attached to the material testing machine. The specimen is composed of top and bottom layers and a middle layer of pyramid-core structure and each layer is bonded by brazing. The variables chosen for experiments were clearance between punch and die, location of bend line on the specimen surface and clamping type of specimen during L-bending. Effects of these variables on deformation of specimen around die-corner radius were investigated. It was shown that the irregular shapes of recess are formed in the inner layer of bended parts and they greatly depend on working conditions.

  • PDF

Forming Analysis of L-type Bending of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 L형 굽힘 성형해석)

  • Chung, W.J.;Kim, J.H.;Lim, S.J.;Yoo, J.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.560-563
    • /
    • 2008
  • A condensed model is proposed for the simulation of forming of sandwich sheet with pyramid core. A corresponding finite element analysis for L-type bending is carried out to prove the accuracy and the effectiveness. Simulation results are compared with those of experiment. Deformation shape and post-buckling behavior by simulation are in good agreement with those of experiment for the considerable range of deformation. From the comparison of force-displacement curve, it is shown that the proposed model shows good prediction of the forming force compared to the experiment. Thus, the effectiveness of the proposed method is sufficiently demonstrated.

  • PDF

Development of Analysis Method for Forming of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 성형해석기술 개발)

  • Lim, S.J.;Kim, J.H.;Seong, Dae-Yong;Yang, Dong-Yeol;Chung, W.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.266-267
    • /
    • 2007
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. In order to simulate forming of sandwich sheet with pyramid core, an effective simulation method is required. Compared to the expensive model using solid elements, cost effective model using simplified elements such as shells and beams is developed. By comparing two models in terms of the cost and accuracy for unit cell deformation, a developed model shows some advantages over the model using solid elements. Evolution of two kind of forming limits, face buckling and core buckling are successfully expressed by developed model. Developed model is also applied in the simulation of square cup drawing and L-type bending. The corresponding experiments are carried out. Deformation shape and wrinkling behavior are compared and discussed. It is found that simulation results using a developed model are in good agreement with experiments.

  • PDF

Forming Analysis of L-type Bending of Sandwich Sheet with Pyramid Core (피라미드 코어를 가진 샌드위치 판재의 L형 굽힘 성형해석)

  • Lim, Sung-Jin;Chung, Wan-Jin;Kim, Jong-Ho
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.378-383
    • /
    • 2009
  • In this study, the use of a condensed model is proposed for the simulation of forming of sandwich sheet with pyramid core. A corresponding finite element analysis for L-type bending is carried out to prove the accuracy and the effectiveness. In order to improve the accuracy of forming analysis, more precise modeling of core shape and consideration of work-hardening of previous core forming are carried out. Simulation results are compared with those of experiment. Deformation shape and post-buckling behavior by simulation are in good agreement with those of experiment for the considerable range of deformation. From the comparison of force-displacement curve, it is shown that the proposed model shows good prediction of post-buckling behavior.

Numerical Analysis of Light Extraction Efficiency of a Core-shell Nanorod Light-emitting Diode

  • Kangseok Kim;Gijun Ju;Younghyun Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.496-503
    • /
    • 2023
  • We present a detailed analysis of the light extraction efficiency (LEE) of a core-shell nanorod light emitting diode (LED) using finite-difference time-domain (FDTD) simulations. We found that the LEE has a deep dependence on source positions and polarization directions based on the calculated LEE results for every x and z position inside the core-shell nanorod structure. The LEEs are different for the upper part (pyramid) and the lower part (sidewall) of the core-shell nanorod owing to total internal reflection (TIR) and the generated optical modes in the structure. As a result, the LEE of sidewall is much larger than that of pyramid. The averaged LEE of the core-shell nanorod LED is also investigated with variable p-GaN thickness, n-GaN thickness, and height for the design guidelines for the optimized LEE of core-shell nanorod LEDs.

A Study on the Structural Shape and Vibrational Characteristics of Aluminum Sandwich Panel (알루미늄 샌드위치 패널의 구조적 형상 및 진동 특성에 관한 연구)

  • Bae, Dong-Myung;Son, Jung-Dae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.351-359
    • /
    • 2004
  • Aluminum honeycomb sandwich panel (AHSP) not only have high flexural rigidity and strength per density but also excellence in anti-vibration and anti-noise properties. Their properties are very useful for build airplane and high speed crafts, which need lighter-weighted and more strengthed element. Recently, the AHSP is regarded as a promising strength member of light structures like the hull of high speed crafts. Generally, the core shape of aluminum sandwich panel (ASP) is the hexagonal shape of honeycomb. But, in this paper, authors proposed the ASP with pyramid core, as the ASP model of new type, and analysed the structural and vibrational characteristics for aluminum pyramid sandwich panel (APSP) as this new ASP type, according to the thickness variation of core and face, the height variation of core. The applied sandwich models have isotropic and symmetrical aluminum faces and pyramid cores. And, the applied boundary conditions are simple, fixed and free support.

Design and Implementation of Hardware for various vision applications (컴퓨터 비전응용을 위한 하드웨어 설계 및 구현)

  • Yang, Keun-Tak;Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.156-160
    • /
    • 2011
  • This paper describes the design and implementation of a System-on-a-Chip (SoC) for pattern recognition to use in embedded applications. The target Soc consists of LEON2 core, AMBA/APB bus-systems and custom-designed accelerators for Gaussian Pyramid construction, lighting compensation and histogram equalization. A new FPGA-based prototyping platform is implemented and used for design and verification of the target SoC. To ensure that the implemented SoC satisfies the required performances, a pattern recognition application is performed.