DOI QR코드

DOI QR Code

Numerical Analysis of Light Extraction Efficiency of a Core-shell Nanorod Light-emitting Diode

  • Kangseok Kim (Department of Photonics and Nanoelectronics, Hanyang University) ;
  • Gijun Ju (Department of Photonics and Nanoelectronics, Hanyang University) ;
  • Younghyun Kim (Department of Photonics and Nanoelectronics, Hanyang University)
  • Received : 2023.04.24
  • Accepted : 2023.07.14
  • Published : 2023.10.25

Abstract

We present a detailed analysis of the light extraction efficiency (LEE) of a core-shell nanorod light emitting diode (LED) using finite-difference time-domain (FDTD) simulations. We found that the LEE has a deep dependence on source positions and polarization directions based on the calculated LEE results for every x and z position inside the core-shell nanorod structure. The LEEs are different for the upper part (pyramid) and the lower part (sidewall) of the core-shell nanorod owing to total internal reflection (TIR) and the generated optical modes in the structure. As a result, the LEE of sidewall is much larger than that of pyramid. The averaged LEE of the core-shell nanorod LED is also investigated with variable p-GaN thickness, n-GaN thickness, and height for the design guidelines for the optimized LEE of core-shell nanorod LEDs.

Keywords

Acknowledgement

Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (grant No. 2023R1A6C103A035, No. 2021R1A6C101A405); Technology Innovation Program (20015909) through the Korea Evaluation Institute of Industrial Technology (KEIT), funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea); National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. 2021R1G1A1091912, No. 2022K1A3A1A79090726); Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0023718, HRD Program for Industrial Innovation).

References

  1. Z. Chen, S. Yan, and C. Danesh, "MicroLED technologies and applications: Characteristics, fabrication, progress, and challenges," J. Phys. D: Appl. Phys. 54, 123001 (2021).
  2. Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.-H. Ho, H.-C. Kuo, and J.-H. He, "Microlight-emitting diodes with quantum dots in display technology," Light: Sci. Appl. 9, 83 (2020).
  3. A. R. Anwar, M. T. Sajjad, M. A. Johar, C. A. Hernandez-Gutierrez, M. Usman, and S. P. Lepkowski, "Recent progress in micro-LED-based display technologies," Laser Photonics Rev. 16, 210047 (2022).
  4. Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, "Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes," J. Appl. Phys. 107, 013103 (2010).
  5. J. Xiong, E.-L. Hsiang, Z. He, T. Zhan, and S.-T. Wu, "Augmented reality and virtual reality displays: emerging technologies and future perspectives," Light: Sci. Appl. 10, 216 (2021).
  6. H. Perlman, T. Eisenfeld, and A. Karsenty, "Performance enhancement and applications review of nano light emitting device (LED)," Nanomaterials 11, 23 (2020).
  7. A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, M. Al Suleiman, S. Merzsch, J. Wei, S. Li, H. H. Wehmann, W. Bergbauer, M. Strassburg, A. Trampert, U. Jahn, and H. Riechert, "The nanorod approach: GaN NanoLEDs for solid state lighting," Phys. Status Solidi C 8, 2296-2301 (2011). https://doi.org/10.1002/pssc.201000989
  8. J. Bai, Q. Wang, and T. Wang, "Greatly enhanced performance of InGaN/GaN nanorod light emitting diodes," Phys. Status Solidi A 209, 477-480 (2012).
  9. S.-W. Wang, K.-B. Hong, Y.-L. Tsai, C.-H. Teng, A.-J. Tzou, Y.-C. Chu, P.-T. Lee, P.-C. Ku, C.-C. Lin, and H.-C. Kuo, "Wavelength tunable InGaN/GaN nano-ring LEDs via nanosphere lithography," Sci. Rep. 7, 42962 (2017).
  10. L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T. T. D. Tran, and C. Chang-Hasnain, "GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate," Nano Lett. 11, 385-390 (2011). https://doi.org/10.1021/nl102988w
  11. P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nat. Mater. 14, 454-458 (2015). https://doi.org/10.1038/nmat4270
  12. I. Akasaki, "Fascinated journeys into blue light," Int. J. Mod. Phys. B 29, 1530014 (2015).
  13. C.-F. Lu, C.-F. Huang, and C. C. Yang, "Reduced blue shift in screening the quantum-confined stark effect of an InGaN/GaN quantum well with the prestrained growth of a light-emitting diode," in Quantum Electronics and Laser Science Conference (Optica Publishing Group, USA, 2008), paper JThA64.
  14. K. Pieniak, M. Chlipala, H. Turski, W. Trzeciakowski, G. Muziol, G. Staszczak, A. Kafar, I. Makarowa, E. Grzanka, S. Grzanka, C. Skierbiszewski, and T. Suski, "Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction," Opt. Express 29, 1824-1837 (2021). https://doi.org/10.1364/OE.415258
  15. S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, "Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs," Appl. Phys. Lett. 111, 171105 (2017).
  16. O. Ambacher, J. Majewski, C. Miskys, A Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, "Pyroelectric properties of Al(In)GaN/GaN hetero-and quantum well structures," J. Phys. Condens. Matter 14, 3399 (2002).
  17. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect," Phys. Rev. Lett. 53, 2173-2176 (1984). https://doi.org/10.1103/PhysRevLett.53.2173
  18. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, "Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells," Jpn. J. Appl. Phys. 36, L382 (1997).
  19. Y. Robin, S. Y. Bae, T. V. Shubina, M. Pristovsek, E. A. Evropeitsev, D. A. Kirilenko, V. Yu. Davydov, A. N. Smirnov, A. A. Toropov, V. N. Jmerik, M. Kushimoto, S. Nitta, S. V. Ivanov, and H. Amano, "Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes," Sci. Rep. 8, 7311 (2018).
  20. E. D. Le Boulbar, I. Girgel, C. J. Lewins, P. R. Edwards, R. W. Martin, A. Satka, D. W. E. Allsopp, and P. A. Shields, "Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays," J. Appl. Phys. 114, 094302 (2013).
  21. S. Li and A. Waag, "GaN based nanorods for solid state lighting," J. Appl. Phys. 111, 071101 (2012).
  22. B. O. Jung, S.-Y. Bae, S. Lee, S. Y. Kim, J. Y. Lee, Y. Honda, and H. Amano, "Emission characteristics of InGaN/GaN core-shell nanorods embedded in a 3D light-emitting diode," Nanoscale Res. Lett. 11, 215 (2016).
  23. X. Wang, S. Li, M. S. Mohajerani, J. Ledig, H.-H. Wehmann, M. Mandl, M. Strassburg, U. Steegmuller, U. Jahn, J. Lahnemann, H. Riechert, I. Griffiths, D. Cherns, and A. Waag, "Continuous-flow MOVPE of Ga-polar GaN column arrays and core-shell LED structures," Cryst. Growth Des. 13, 3475-3480 (2013). https://doi.org/10.1021/cg4003737
  24. M. Tchernycheva, V. Neplokh, H. Zhang, P. Lavenus, L. Rigutti, F. Bayle, F. H. Julien, A. Babichev, G. Jacopin, L. Largeau, R. Ciechonski, G. Vescovi, and O. Kryliouk, "Core-shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping," Nanoscale 7, 11692-11701 (2015). https://doi.org/10.1039/C5NR00623F
  25. A. Vogt, J. Hartmann, H. Zhou, M. S. Mohajerani, S. Fundling, B. Szafranski, H.-H. Wehmann, A. Waag, T. Voss, T. Schimpke, A. Avramescu, and M. Strassburg, "Recombination dynamics in planar and three-dimensional InGaN/GaN light emitting diode structures," J. Mater. Res. 32, 2456-2463 (2017). https://doi.org/10.1557/jmr.2017.212
  26. H.-Y. Ryu, "Effect of internal polarization fields in InGaN/GaN multiple-quantum wells on the efficiency of blue light-emitting diodes," Jpn. J. Appl. Phys. 51, 09MK03 (2012).
  27. J.-I. Shim and D.-S. Shin, "Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization," Nanophotonics 7, 1601-1615 (2018). https://doi.org/10.1515/nanoph-2018-0094
  28. E. A. Evropeitsev, D. R. Kazanov, Y. Robin, A. N. Smirnov, I. A. Eliseyev, V. Y. Davydov, A. A. Toropov, S. Nitta, T. V. Shubina, and H. Amano, "State-of-the-art and prospects for intense red radiation from core-shell InGaN/GaN nanorods," Sci. Rep. 10, 19048 (2020).
  29. J.-H. Kim, Y.-H. Ko, J.-H. Cho, S.-H. Gong, S.-M. Koa, and Y.-H. Cho, "Toward highly radiative white light emitting nanostructures: A new approach to dislocation-eliminated GaN/InGaN core-shell nanostructures with a negligible polarization field," Nanoscale 6, 14213-14220 (2014). https://doi.org/10.1039/C4NR03365E
  30. Lumerical Solution Inc., "Micro-LED," (Lumerical Solution Inc.), https://optics.ansys.com/hc/en-us/articles/360053540493-Micro-LED (Accessed Date: Mar. 24, 2023).
  31. H.-Y. Ryu, "Evaluation of light extraction efficiency of GaN-based nanorod light-emitting diodes by averaging over source positions and polarizations," Crystals 8, 27 (2018).
  32. H. Huang, H. Hu, H. Wang, and K. Geng, "Enhanced light output of dipole source in GaN-based nanorod light-emitting diodes by silver localized surface plasmon," J. Nanomater. 2014, 180765 (2014).
  33. J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, "Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array," Nano Lett. 13, 4317-4325 (2013). https://doi.org/10.1021/nl4021045
  34. S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information (Springer New York, USA, 1999).
  35. E. F. Schubert, Light-emitting Diodes, 2nd ed. (Cambridge, UK, 2006).
  36. S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, "Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions," IEEE J. Photovoltaics 8, 118-124 (2017).
  37. J. K. Sprenger, H. Sun, A. S. Cavanagh, A. Roshko, P. T. Blanchard, and S. M. George, "Electron- enhanced atomic layer deposition of thin films at room temperature," J. Vac. Sci. Technol. 36, 01A118 (2013).
  38. S. O. Kasap, Optoelectronics and Photonics, 2nd ed. (Pearson Education, UK, 2013).
  39. S.-U. Kim, J.-K. Oh, D.-Y. Um, B. Chandran, C.-R. Lee, and Y.-H. Ra, "Sub-micron monolithic full-color nanorod LEDs on a single substrate," IEEE Photonics J. 15, 2200205 (2023).
  40. T. Nobis and M. Grundmann, "Low-order optical whispering-gallery modes in hexagonal nanocavities," Phys. Rev. A 72, 063806 (2005).
  41. Z. Wang and B. Nabet, "Nanowire optoelectronics," Nanophotonics 4, 491-502 (2015). https://doi.org/10.1515/nanoph-2015-0025