Acknowledgement
Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (grant No. 2023R1A6C103A035, No. 2021R1A6C101A405); Technology Innovation Program (20015909) through the Korea Evaluation Institute of Industrial Technology (KEIT), funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea); National Research Foundation of Korea (NRF) funded by the Korea government (MSIT) (No. 2021R1G1A1091912, No. 2022K1A3A1A79090726); Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0023718, HRD Program for Industrial Innovation).
References
- Z. Chen, S. Yan, and C. Danesh, "MicroLED technologies and applications: Characteristics, fabrication, progress, and challenges," J. Phys. D: Appl. Phys. 54, 123001 (2021).
- Z. Liu, C.-H. Lin, B.-R. Hyun, C.-W. Sher, Z. Lv, B. Luo, F. Jiang, T. Wu, C.-H. Ho, H.-C. Kuo, and J.-H. He, "Microlight-emitting diodes with quantum dots in display technology," Light: Sci. Appl. 9, 83 (2020).
- A. R. Anwar, M. T. Sajjad, M. A. Johar, C. A. Hernandez-Gutierrez, M. Usman, and S. P. Lepkowski, "Recent progress in micro-LED-based display technologies," Laser Photonics Rev. 16, 210047 (2022).
- Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, "Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes," J. Appl. Phys. 107, 013103 (2010).
- J. Xiong, E.-L. Hsiang, Z. He, T. Zhan, and S.-T. Wu, "Augmented reality and virtual reality displays: emerging technologies and future perspectives," Light: Sci. Appl. 10, 216 (2021).
- H. Perlman, T. Eisenfeld, and A. Karsenty, "Performance enhancement and applications review of nano light emitting device (LED)," Nanomaterials 11, 23 (2020).
- A. Waag, X. Wang, S. Fundling, J. Ledig, M. Erenburg, R. Neumann, M. Al Suleiman, S. Merzsch, J. Wei, S. Li, H. H. Wehmann, W. Bergbauer, M. Strassburg, A. Trampert, U. Jahn, and H. Riechert, "The nanorod approach: GaN NanoLEDs for solid state lighting," Phys. Status Solidi C 8, 2296-2301 (2011). https://doi.org/10.1002/pssc.201000989
- J. Bai, Q. Wang, and T. Wang, "Greatly enhanced performance of InGaN/GaN nanorod light emitting diodes," Phys. Status Solidi A 209, 477-480 (2012).
- S.-W. Wang, K.-B. Hong, Y.-L. Tsai, C.-H. Teng, A.-J. Tzou, Y.-C. Chu, P.-T. Lee, P.-C. Ku, C.-C. Lin, and H.-C. Kuo, "Wavelength tunable InGaN/GaN nano-ring LEDs via nanosphere lithography," Sci. Rep. 7, 42962 (2017).
- L. C. Chuang, F. G. Sedgwick, R. Chen, W. S. Ko, M. Moewe, K. W. Ng, T. T. D. Tran, and C. Chang-Hasnain, "GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate," Nano Lett. 11, 385-390 (2011). https://doi.org/10.1021/nl102988w
- P. Pust, P. J. Schmidt, and W. Schnick, "A revolution in lighting," Nat. Mater. 14, 454-458 (2015). https://doi.org/10.1038/nmat4270
- I. Akasaki, "Fascinated journeys into blue light," Int. J. Mod. Phys. B 29, 1530014 (2015).
- C.-F. Lu, C.-F. Huang, and C. C. Yang, "Reduced blue shift in screening the quantum-confined stark effect of an InGaN/GaN quantum well with the prestrained growth of a light-emitting diode," in Quantum Electronics and Laser Science Conference (Optica Publishing Group, USA, 2008), paper JThA64.
- K. Pieniak, M. Chlipala, H. Turski, W. Trzeciakowski, G. Muziol, G. Staszczak, A. Kafar, I. Makarowa, E. Grzanka, S. Grzanka, C. Skierbiszewski, and T. Suski, "Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction," Opt. Express 29, 1824-1837 (2021). https://doi.org/10.1364/OE.415258
- S. Zhu, S. Lin, J. Li, Z. Yu, H. Cao, C. Yang, J. Li, and L. Zhao, "Influence of quantum confined Stark effect and carrier localization effect on modulation bandwidth for GaN-based LEDs," Appl. Phys. Lett. 111, 171105 (2017).
- O. Ambacher, J. Majewski, C. Miskys, A Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, "Pyroelectric properties of Al(In)GaN/GaN hetero-and quantum well structures," J. Phys. Condens. Matter 14, 3399 (2002).
- D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, "Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect," Phys. Rev. Lett. 53, 2173-2176 (1984). https://doi.org/10.1103/PhysRevLett.53.2173
- T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, "Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells," Jpn. J. Appl. Phys. 36, L382 (1997).
- Y. Robin, S. Y. Bae, T. V. Shubina, M. Pristovsek, E. A. Evropeitsev, D. A. Kirilenko, V. Yu. Davydov, A. N. Smirnov, A. A. Toropov, V. N. Jmerik, M. Kushimoto, S. Nitta, S. V. Ivanov, and H. Amano, "Insight into the performance of multi-color InGaN/GaN nanorod light emitting diodes," Sci. Rep. 8, 7311 (2018).
- E. D. Le Boulbar, I. Girgel, C. J. Lewins, P. R. Edwards, R. W. Martin, A. Satka, D. W. E. Allsopp, and P. A. Shields, "Facet recovery and light emission from GaN/InGaN/GaN core-shell structures grown by metal organic vapour phase epitaxy on etched GaN nanorod arrays," J. Appl. Phys. 114, 094302 (2013).
- S. Li and A. Waag, "GaN based nanorods for solid state lighting," J. Appl. Phys. 111, 071101 (2012).
- B. O. Jung, S.-Y. Bae, S. Lee, S. Y. Kim, J. Y. Lee, Y. Honda, and H. Amano, "Emission characteristics of InGaN/GaN core-shell nanorods embedded in a 3D light-emitting diode," Nanoscale Res. Lett. 11, 215 (2016).
- X. Wang, S. Li, M. S. Mohajerani, J. Ledig, H.-H. Wehmann, M. Mandl, M. Strassburg, U. Steegmuller, U. Jahn, J. Lahnemann, H. Riechert, I. Griffiths, D. Cherns, and A. Waag, "Continuous-flow MOVPE of Ga-polar GaN column arrays and core-shell LED structures," Cryst. Growth Des. 13, 3475-3480 (2013). https://doi.org/10.1021/cg4003737
- M. Tchernycheva, V. Neplokh, H. Zhang, P. Lavenus, L. Rigutti, F. Bayle, F. H. Julien, A. Babichev, G. Jacopin, L. Largeau, R. Ciechonski, G. Vescovi, and O. Kryliouk, "Core-shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping," Nanoscale 7, 11692-11701 (2015). https://doi.org/10.1039/C5NR00623F
- A. Vogt, J. Hartmann, H. Zhou, M. S. Mohajerani, S. Fundling, B. Szafranski, H.-H. Wehmann, A. Waag, T. Voss, T. Schimpke, A. Avramescu, and M. Strassburg, "Recombination dynamics in planar and three-dimensional InGaN/GaN light emitting diode structures," J. Mater. Res. 32, 2456-2463 (2017). https://doi.org/10.1557/jmr.2017.212
- H.-Y. Ryu, "Effect of internal polarization fields in InGaN/GaN multiple-quantum wells on the efficiency of blue light-emitting diodes," Jpn. J. Appl. Phys. 51, 09MK03 (2012).
- J.-I. Shim and D.-S. Shin, "Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization," Nanophotonics 7, 1601-1615 (2018). https://doi.org/10.1515/nanoph-2018-0094
- E. A. Evropeitsev, D. R. Kazanov, Y. Robin, A. N. Smirnov, I. A. Eliseyev, V. Y. Davydov, A. A. Toropov, S. Nitta, T. V. Shubina, and H. Amano, "State-of-the-art and prospects for intense red radiation from core-shell InGaN/GaN nanorods," Sci. Rep. 10, 19048 (2020).
- J.-H. Kim, Y.-H. Ko, J.-H. Cho, S.-H. Gong, S.-M. Koa, and Y.-H. Cho, "Toward highly radiative white light emitting nanostructures: A new approach to dislocation-eliminated GaN/InGaN core-shell nanostructures with a negligible polarization field," Nanoscale 6, 14213-14220 (2014). https://doi.org/10.1039/C4NR03365E
- Lumerical Solution Inc., "Micro-LED," (Lumerical Solution Inc.), https://optics.ansys.com/hc/en-us/articles/360053540493-Micro-LED (Accessed Date: Mar. 24, 2023).
- H.-Y. Ryu, "Evaluation of light extraction efficiency of GaN-based nanorod light-emitting diodes by averaging over source positions and polarizations," Crystals 8, 27 (2018).
- H. Huang, H. Hu, H. Wang, and K. Geng, "Enhanced light output of dipole source in GaN-based nanorod light-emitting diodes by silver localized surface plasmon," J. Nanomater. 2014, 180765 (2014).
- J. R. Riley, S. Padalkar, Q. Li, P. Lu, D. D. Koleske, J. J. Wierer, G. T. Wang, and L. J. Lauhon, "Three-dimensional mapping of quantum wells in a GaN/InGaN core-shell nanowire light-emitting diode array," Nano Lett. 13, 4317-4325 (2013). https://doi.org/10.1021/nl4021045
- S. Adachi, Optical constants of crystalline and amorphous semiconductors: numerical data and graphical information (Springer New York, USA, 1999).
- E. F. Schubert, Light-emitting Diodes, 2nd ed. (Cambridge, UK, 2006).
- S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, "Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions," IEEE J. Photovoltaics 8, 118-124 (2017).
- J. K. Sprenger, H. Sun, A. S. Cavanagh, A. Roshko, P. T. Blanchard, and S. M. George, "Electron- enhanced atomic layer deposition of thin films at room temperature," J. Vac. Sci. Technol. 36, 01A118 (2013).
- S. O. Kasap, Optoelectronics and Photonics, 2nd ed. (Pearson Education, UK, 2013).
- S.-U. Kim, J.-K. Oh, D.-Y. Um, B. Chandran, C.-R. Lee, and Y.-H. Ra, "Sub-micron monolithic full-color nanorod LEDs on a single substrate," IEEE Photonics J. 15, 2200205 (2023).
- T. Nobis and M. Grundmann, "Low-order optical whispering-gallery modes in hexagonal nanocavities," Phys. Rev. A 72, 063806 (2005).
- Z. Wang and B. Nabet, "Nanowire optoelectronics," Nanophotonics 4, 491-502 (2015). https://doi.org/10.1515/nanoph-2015-0025