• Title/Summary/Keyword: Push force

Search Result 148, Processing Time 0.025 seconds

Fuzzy Logic Modeling and Control for Drilling of Composite Laminates ; Simulation

  • Chung, Byeong-Mook;Ye Sheng;Masayoshi Tomizuka
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • In drilling of composite laminates, it is important to minimize of reduce occurrences of delaminations. In particular, a peel -up delamination at entrance and push-up delamination at exit are common. Deleaminations may by avoided by regulating the drill thrust force can be controlled by adjusting the feedrate of the drill. Dynamics involved in drilling of composite laminates is time varying and nonlinear. In this paper, a fuzzy logic model and control strategy are proposed. Simulation results show that the fuzzy model can describe the nonlinear time-varying process well. The fuzzy controller realizes a fast rise time and a little overshoot of drilling force.

  • PDF

MR Haptic Device for Integrated Control of Vehicle Comfort Systems (차량 편의장치 통합 조작을 위한 MR 햅틱 장치)

  • Han, Young-Min;Jang, Kuk-Cho
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.291-298
    • /
    • 2017
  • In recent years, the increase of secondary controls within vehicles requires a mechanism to integrate various controls into a single device. This paper presents control performance of an integrated magnetorheological (MR) haptic device which can adjust various in-vehicle comfort instruments. As a first step, the MR fluid-based haptic device capable of both rotary and push motions within a single device is devised as an integrated multi-functional instrument control device. Under consideration of the torque and force model of the proposed device, a magnetic circuit is designed. The proposed MR haptic device is then manufactured and its field-dependent torque and force are experimentally evaluated. Furthermore, an inverse model compensator is synthesized under basis of the Bingham model of the MR fluid and torque/force model of the device. Subsequently, haptic force-feedback maps considering in-vehicle comfort functions are constructed and interacts with the compensator to achieve a desired force-feedback. Control performances such as reflection force are experimentally evaluated for two specific comfort functions.

A COMPARATIVE STUDY ON THE DISLODGING FORCE OF MAGNETIC ATTACHMENT TO THE DENTURE RESIN BY MAGNETIC DESIGN AND FIXING MATERIALS

  • Lee, Jung-Hwa;Lee, Jong-Hyuk;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.261-268
    • /
    • 2008
  • STATEMENT OF PROBLEM: Detachment of the magnetic assembly from the denture base has been a problem in magnetic overdenture patients. PURPOSE: The objectives of this study were to compare the dislodging force by the fixing materials and the designs of the magnetic assembly, and to compare the effect between the fixing materials and the designs of the magnetic assembly. MATERIAL AND METHODS: Two fixing materials, Jet denture repair $acrylic^{(R)}$ and Super-$Bond^{(R)}$ C&$B^{(R)}$ and two types of magnetic assembly designed with or without wing were used. Each magnetic assembly was fixed in the chamber of the denture base resin block ($Lucitone^{(R)}$199) with each fixing material respectively. These specimens were thermocycled 2,000 cycles in the water held at $4^{\circ}C$ and $60^{\circ}C$ with a dwell time of 1 min each time. Each specimen was seated in a testing jig and then a push-out test was performed with a universal testing machine at a cross head speed of 0.5 mm/min to measure the maximum dislodging forces. RESULTS: Comparing the fixing materials, Super-Bond C&$B^{(R)}$ showed superior dislodging force than Jet denture repair $acrylic^{(R)}$. Comparing the design of the magnetic assemblies, the wing design magnetic assembly showed better dislodging force. Combination of the Super-Bond C&$B^{(R)}$ as a fixing material and wing design magnetic assembly revealed a greatest dislodging force. The kind of fixing material was more influential than the type of magnetic assembly. CONCLUSION: The dislodging force of Super-Bond C&$B^{(R)}$ was significantly higher than Jet denture repair $acrylic^{(R)}$. And the dislodging force of magnetic assembly which have wing design was significantly higher than magnetic assembly which have no wing design.

Effect of the Abdominal Drawing-in Maneuver on the Scapular Stabilizer Muscle Activities and Scapular Winging During Push-up Plus Exercise in Subjects With Scapular Winging

  • Kim, Da-eun;Shin, A-reum;Lee, Ji-hyun;Cynn, Heon-seock
    • Physical Therapy Korea
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2017
  • Background: Scapular winging is a prominence of the entire scapular medial border, mainly caused by insufficient activity of the serratus anterior (SA) and imbalance of scapulothoracic muscles. Push-up plus (PUP) exercise has been commonly used to increase SA muscle activity. The facilitation of abdominal muscle may affect scapular muscle activity by myofascial connections. Thus, the sequential activation of the turnk muscles is suggested to facilitate the transition of proper force from upper limb and restore force couple of scapular muscles. The abdominal drawing-in maneuver (ADIM) has been effective in improving activation of the deep trunk muscles during movement. Objects: The aim of this study was to determine the effect of ADIM on the activity of the upper trapezius (UT), lower trapezius (LT), and SA during PUP exercises in subjects with scapular winging. Methods: Fourteen men with scapular winging (determined as a of distance between the scapular medial border and thoracic wall over 3 cm) volunteered for our study. The subjects performed the PUP exercise with and without ADIM. Surface electromyography was used to collect the electromyography data of the UT, LT, and SA. A scapulometer was used to measure the amount of scapular winging. Results: SA activity was significantly greater and scapular winging significantly lower during the PUP exercise with ADIM than during those without ADIM. Conclusion: PUP exercise with ADIM can be used as an beneficial method to improve SA activation and to reduce the amount of scapular winging in subjects with scapular winging.

Finite Element Analysis of Deformation Characteristics of the Shear Studs embedded in High Strength Concrete Slab of the Composite Beam (전단스터드의 변형특성에 관한 유한요소해석 -고강도 콘크리트를 사용한 합성보-)

  • Shin, Hyun Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.473-482
    • /
    • 2007
  • When the material strength and ductility of shear studs is sufficient to carry the interface shear force, the composite beam can behave safely without premature structural failure in the interface and without ultimate moment reduction. In this study, the influence of the deformation capacity of shear studs embedded in high-strength concrete on structural behavior and design condition of composite beam is analyzed using FEM. In the analysis, load type, degree of shear connection and arrangement of studs are considered as analysis parameters. According to analysis results, in the case of partial interaction,the deformation capacity of studs embedded in high-strength concrete should be considered together with material strength. Especially in the case of uniform arrangement of studs and uniformly distributed load, a minimum available degree of shear connection is restricted by the deformation capacity of studs. In this case,shear studs should be arranged in consideration of the distribution of shear force at the composite section.

Design and Implement of Secure helper using Smart-phone Auto recording App (스마트폰 자동 녹음 앱을 이용한 생활 안전 도우미 설계 및 구현)

  • Moon, Jeong-Kyung;Hwang, Deuk-Young;Kim, Jin-Mook
    • Convergence Security Journal
    • /
    • v.15 no.7
    • /
    • pp.111-118
    • /
    • 2015
  • The violent crime has increased dramatically in our society. This is because our society has to change quickly. Strong police force, but this is not enough to solve the crime. And there are a lot of police to investigate the situation difficult to go out to the crime scene. So inevitably increase in the risk of crime. Researchers have conducted a number of studies to solve this problem. However, the proposed study how realistic are many points still lacking. herefore, we to take advantage of smartphones and high-speed Internet access technology to provide security services using the push service for rapid identification and crime situation in this study. Therefore, we would like to provide rapid service to identify criminal security situation using smart-phone app and push services on the high speed internet environments. The proposed system is to record the voice information received from the smart phone near the user presses the hot key is set in advance in real-time, and stores the audio information stored in the LBS information to the server through the authentication procedure. And the server uses the stored voice data and LBS Push service information to inform their families. We have completed the design of the proposed system. And it has implemented a smart phone app, the user authentication server. And using the state in which the push service from the authentication server by transmitting a message to a user to inform a family. But more must examine whether the proposed research is relevant in future studies.

Static behaviour of lying multi-stud connectors in cable-pylon anchorage zone

  • Lin, Zhaofei;Liu, Yuqing;He, Jun
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1369-1389
    • /
    • 2015
  • In order to investigate the behaviour of lying multi-stud connectors in cable-pylon anchorage zone, twenty-four push-out tests are carried out with different stud numbers and diameters. The effect of concrete block width and tensile force on shear strength is investigated using the developed and verified finite element model. The results show that the shear strength of the lying multi-stud connectors is reduced in comparison with the lying single-stud connector. The reduction increases with the increasing of the number of studs in the vertical direction. The influence of the stud number on the strength reduction of the lying multi-stud connectors is decreased under combined shear and tension loads compared with under pure shear. Yet, due to multi-stud effect, they still can't be ignored. The concrete block width has a non-negligible effect on the shear strength of the lying multi-stud connectors and therefore should be chosen properly when designing push-out specimens. No obvious difference is observed between the strength reductions of the studs with 22 mm and 25 mm diameters. The shear strengths obtained from the tests are compared with those predicted by AASHTO LRFD and Eurocode 4. Eurocode 4 generally gives conservative predictions of the shear strength, while AASHTO LRFD overestimates the shear strength. In addition, the lying multi-stud connectors with the diameters of 22 m and 25 mm both exhibit adequate ductility according to Eurocode 4. An expression of load-slip curve is proposed for the lying multi-stud connectors and shows good agreement with the test results.

A Newly Designed Miniplate Staple for High Tibial Osteotomy (근위골절술을 위한 Staple 설계)

  • Mun, Mu-Seong;Bae, Dae-Kyung
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.19-22
    • /
    • 1995
  • A biomechanical study was made to demonstrate the superior mechanical performance of the newly designed Miniplate staple to the conventional Coventry staple in high tibial osteotomy(HTO). Using twenty fresh porcine tibiae, the fixational strengh of the two different types of staple in HTO was compared. To minimize the error due to the specimen-to-specimen individuality, the bone mineral density of the tibiae was measured with a bone densitometry (Dual photon absorptionometer, Luner, USA) and those with $0.8\;{\sim}\;1.2\;gm/cm^2$ at the proximal tibia was used in the biomechanical test. Testing was performed on a material testing system (Autogram ET-5, Shimatzu, Japan) with aid of a commercial data processor (IBM 80386/ ASYST). Using two differant loading modes, 'pull-out' and 'push-out', the maximum resistant force required to release the staple from the substrate bone was recorded. In the pull-out test, ten non-osteotomized specimens were used and the staple was pullout by subjecting an axial tension on the head of the staple inserted. While in the pull-out test where ten tibiae osteotomized in the usual way of HTO were used, the staple was not directly loaded. In this testing, as a mimic condition of the natural knee, the distal part of the specimen tibia was pushed horizontally in order for the staple to be pulled out while the proximal tibia was fixed. The pull-out strength of Coventry staple and miniplate staple were found to be $27.88\;{\pm}\;5.12\;kgf$ and $182.47\;{\pm}\;32.75\;kgf$, respectively. The push-out strength of Coventry staple and miniplate staple were $18.40\;{\pm}\;4.47\;kgf$ and $119.95\;{\pm}\;19.06\;kgf$, respectively. The result revealed that miniplate staple had the pull-out/ push-out strength at least fivetimes higher than Coventry staple. Based on the measured data, it was believed that the newly designed miniplate staple could provide much better postoperative fixation in HTO. The postoerative application of long leg casting may not be needed after HTO surgery.

  • PDF

The Effect of External Pelvic Compression on Shoulder and Lumbopelvic Muscle sEMG and Strength of Trunk Extensor During Push Up Plus and Deadlift Exercise (푸쉬업플러스와 데드리프트 운동 시 골반압박이 견관절과 요골반부 주위근의 근활성도와 체간 신전근 근력에 미치는 영향)

  • Huang, Tian-zong;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.25 no.3
    • /
    • pp.1-11
    • /
    • 2018
  • Background: Lumbopelvic stability is highly important for exercise therapy for patients with low back pain and shoulder dysfunction. It can be attained using a pelvic compression belt. Previous studies showed that external pelvic compression (EPC) enhances form closure by reducing sacroiliac joint laxity and selectively strengthens force closure and motor control by reducing the compensatory activity of the stabilizer. In addition, when the pelvic compression belt was placed directly on the anterior superior iliac spine, the laxity of the sacroiliac cephalic joint could be significantly reduced. Objects: This study aimed to compare the effects of EPC on lumbopelvic and shoulder muscle surface electromyography (EMG) activities during push-up plus (PUP) and deadlift (DL) exercise, trunk extensor strength during DL exercise. Methods: Thirty-eight subjects (21 men and 17 women) volunteered to participate in this study. The subjects were instructed to perform PUP and DL with and without the EPC. EMG data were collect from serratus anterior (SA), pectoralis major (PM), erector spinae (ES), and multifidus (MF). Trunk extensor strength were tested in DL exercise. The data were collected during 3 repetitions of all exercise and the mean of root mean square was used for analysis. Results: The EMG activities of the SA and PM were significantly increased in PUP with pelvic compression as compared with PUP without pelvic compression (p<.05). In DL exercise, a significant improvement in trunk extensor strength was observed during DL exercise with pelvic compression (p<.05). Conclusion: The results of this study indicate that lumbopelvic stabilization reinforced with external pelvic compression may be propitious to strengthen PUP in more-active SA and PM muscles. Applying EPC can improve the trunk extensor strength during DL exercise. Our study shows that EPC was beneficial to improve the PUP and DL exercise efficiency.

Dynamic Behavior of 2D 8-Story Unbraced Steel Frame with Partially Restrained Composite Connection (합성반강접 접합부를 갖는 2차원 8층 비가새 철골골조의 동적거동)

  • Kang, Suk Bong;Lee, Kyung Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.503-513
    • /
    • 2007
  • The seismic responses of a building are affected by the connection characteristics that have effects on structural stiffness. In this study, push-over analysis and time history analysis were performed to estimate structural behavior of 2D eight-story unbraced steel structures with partially restrained composite connections using a nonlinear dynamic analysis program. Nonlinear $M-{\theta}$characteristics of connection and material inelastic characteristics of composite beam and steel column were considered. The idealization of composite semi-rigid connection as fully rigid connection yielded an increase in initial stiffness and ultimate strength in the push-over analysis. In time history analysis, the stiffness and hysteretic behavior of connections have effects on base-shear force, maximum story-drift and maximum moment in beams and columns. For seismic waves with PGA of 0.4 g, the structure with the semi-rigid composite connections shows the maximum story-drift with less than the life safety criteria by FEMA 273 and no inelastic behavior of beam and column, whereas in the structure with rigid connections, beams and columns have experienced inelastic behaviors.