• Title/Summary/Keyword: Purification of amylase

Search Result 48, Processing Time 0.025 seconds

Studies on Enzyme of the Thermophilic Mold-Part. 3. Thermophilic mold amylase- (고온성 사상균의 효소에 관한 연구-(제3보) 고온성 사상균의 Amylase-)

  • Chung, Dong-Hyo;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.13 no.3
    • /
    • pp.231-235
    • /
    • 1970
  • 1. Purification of amylase system produced from Humicola sp. by a submerged culture eras carried out. 2. By DEAE-Cellulose column chromatography amylase system was separated into two fractions eluted at 0.05M and 0.5M phosphate buffer solution of pH 6.0. 3. The saccharogenic amylase was mostly composed of. the fraction of 0.05M phosphate buffer solution of pH 6.0 while the dextrinogenic amylase was perseted in fraction of 0.5M phosphate buffer solution of pH 6.0 4. It was found that the optimum pH of this saccharogenic amylase was within the range of from 4.5 to 5.5, stable pH was within the range of from 4.0 to 9.0 and optimum temperature was $60-65^{\circ}C$. This amylase was stable at $70^{\circ}C$ for ten minutes but completely inactivated $80^{\circ}C$ above.

  • PDF

Purification of ${\alpha}-Amylase$ Inhibitor from Black Bean in Korea (한국산 검정콩 ${\alpha}-Amylase$ 저해물질의 분리 및 정제)

  • Moon, Ju-Seok;Bae, Young-Il;Shim, Ki-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.762-767
    • /
    • 1995
  • The ${\alpha}-Amylase$ inhibitor from black bean(Phaseolus vulgaris) was purified to homogeneity using 70% saturated ammonium sulfate, DEAF-cellulose, Concanavalin-A sepharose chromatography and gel filtration with Superose 6. The purified α-amylase inhibitor showed a single band of 25 KD in molecular weight on the SDS-PAGE. The specific activity of the inhibitor was 544.0 units/mg and the purity was enhanced about 18-fold. The amino acids of ${\alpha}-Amylase$ inhibitor from black bean was mainly glutamic acid, aspartic acid and lysine. The inhibitor was glycoproteins and its carbohydrate contents was 3.2%.

  • PDF

Purification and Characterization of Acid-stable ${\alpha}-Amylase$ of Aspergillus niger K-25 (Aspergillus niger 균주가 생산하는 내산성 아밀라제의 특성)

  • Cho, Myung-Hwan
    • The Korean Journal of Mycology
    • /
    • v.17 no.3
    • /
    • pp.145-148
    • /
    • 1989
  • An acid-stable ${\alpha}-amylase$ produced by Aspergillus niger K-25 strain was purified by fractional precipitation with ammonium sulfate, ethacridine and acetone. The final preparation was homogeneous in cellulose acetate electrophoresis. The enzyme retained 91 % of its oringinal activity at pH 3.0, 8.7% at pH 2.4. The optimum pH of the enzyme was around pH 4. The purified-enzyme with optimum temperature of $40^{\circ}C$ was more heat-stable than the commercial product. The enzyme retained 80% of its original activity when heated to $60^{\circ}C$ for 30 minutes while the commercial amylase lost its acitivity completely within 30 minutes at $50^{\circ}C$.

  • PDF

Purification and Characterization of a Novel Malto-oligosaccharides Forming $\alpha$-Amylase from Bacillus sp.SUH4-2 (Bacillus sp. SUH4-2로부터 생산되는 말토올리고당 생성 $\alpha$-Amylase의 정제 및 특성)

  • Yoon, Sang-Hyeon;Kim, Myo-Jeong;Kim, Jung-Wan;Kwon, Kisung;Lee, Yin-Won;Park, Kwan-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.573-579
    • /
    • 1995
  • A Bacillus strain capable of producing an extracellular malto-oligosaccharides forming $\alpha $-amylase was isolated from soil and designated as Bacillus sp. SUH4-2. The enzyme was purified by ammonium sulfate fractionation, DEAE-Toyopearl and Mono-Q HR 5/5 column chromatographies using a FPLC system. The specific activity of the enzyme was increased by 16.1-fold and the yield was 13.5%. The optimum temperature for the activity of $\alpha $-amylase was 60-65$\circ$C and more than 50% of initial activity was retained after the enzyme was incubated at 60$\circ$C for 40 min. The enzyme was stable over a broad pH range of 5.0-8.0 and the optimum pH was 5.0-6.0. The molecular weight of the enzyme was determined to be about 63.6 kD and isoelectric point was around 5.8. The enzyme activity was strongly inhibited by Mn$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$ ; slightly by Ca$^{2+}$. The purified enzyme produced starch hydrolyzates containing mainly maltose and maltotriose from soluble starch. The starch hydrolyzates were composed of 11% glucose, 59% maltose, 25% maltotriose and 5% maltotetraose.

  • PDF

Properties of Carbohydrase Prepared from Lipomyces starkeyi JLC26 (Lipomyces starkeyi JLC26에서 유래된 Carbohydrase의 특성)

  • Jun, Sun-Mee;Kim, Do-Man;Kim, Do-Won
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.713-717
    • /
    • 1999
  • We have isolated a dextranase and amylase constitutive and hyper-producing mutant, Lipomyces starkeyi JLC26, from Lipomyces starkeyi ATCC74054 after mutation using UV irradiation. After partial purification of dextranase and amylase (together DXAMase;both activities were always co-purified) by ammonium sulfate precipitation, CM-Sepharose column chromatography, the specific activities of amylase and dextranase were 5367 and 3045 unit/mg, respectively. The pH effects for activity and stabiligy of both enzymes were similar to each other: Optimum pH and temperature for activity sere at 5.5 and 37$^{\circ}C$ and optimum ranges for stability were at pH 2.5-5.5 and 4-55$^{\circ}C$, respectively. The reaction end products of dextranase and amylase activities were found to the typical for those of endo-dextranase and endo-amylase. When the carbohydrase and maltotriose were reacted, glucose, maltose, isomaltose, maltotriose, panose and ${\alpha}(1{\rightarrow}6)$glucosylmaltotriose were produced by disproportionation reaction.

  • PDF

Purification and Characterization of a Maltopentaose-producing Amylase from Bacillus megaterium KSM B-404. (Bacillus megaterium KSM B-404으로부터 생산되는 Maltopentaose생성 Amylase의 정제 및 특성)

  • 박제원;김병주;이재우;김영배
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2002
  • An amylase that hydrolyzes starch into maltopentaose as a main product was found in the culture supernatant of a strain of Bacillus megaterium KSM B-404 isolated from local soil. The enzyme was purified 129-fold by ammonium sulfate precipitation, DEAE-Toyopearl and Superdex 75 HR 10/30 column using a FPLC system. The molecular weight of the amylase was determined as about 68 kDa by using SDS-PAGE. Optimum pH and temperature of amylase were found to be $50^{\circ}C$ and pH 6.0~7.0, respectively. The enzyme was stable up to $60^{\circ}C$ by addition of $Ca^{2+}$ and its pH stability was in the range of 6.0~10.0. The activity of enzyme was inhibited by $Cu^{2+}$ $Hg^{2+}$ , and $Fe^{3+}$ and maintained by $Ca^{2+}$ and $Mg^{2+}$ . EDTA and pCMB also showed inhibitory effect to the enzyme. TLC and HPLC analysis of the products of the enzyme reaction showed the presence of maltopentaose(52%), maltotriose (25%), maltose (11%), glucose, and maltotetraose in the starch hydrolysates.

Saprolegnia ferax에 의한$\beta$-amylase의 생산 및 특성

  • Bai, Suk;Cho, Nam-Chul;Chun, Soon-Bai
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.109-114
    • /
    • 1997
  • The Oomycete Saprolegnia ferax produces an extracellular $\beta$-amylase, Maximum enzyme yield was attained after 7 days of growth in YNB starch medium (pH 6.5) at 25$\circ$C. The amylase was pu- rified 24-fold by ultrafitration, HPLC DEAE column and HPLC gel filtration. The purfied enzyme was a monomeric glycoprotein with a molecular weight of about 44,000 dalton. The pH and temperature optima were 6.5 and 50$\circ$C, respectively. The enzyme was fairly stable up to 50$\circ$C and at acidic pH region (pH 4.0-7.0). The apparent Km and Vmax values of the enzyme against soluble starch were 0.77 mg/ml and 2,174 $\mu$moles/mg protein, respectively. Amino acid analysis indicated that the enzyme was enriched in alanine, glycine, leucine and acidic amino acid. Starch hydrolysis with the enzyme released maltose but not glucose, whereas maltotriose, Schardinger dextrin ($\alpha$-cyclodextrin) and pullulan were not hydrolysed by the enzyme. The enzyme was inhibited by Schardinger dextrin, p-chloromercuribenzoate(PCMB), CU$^{2+}$' and Hg$^{2+}$. Inhibition of the enzyme by PCMB could be reversed by the addition of cysteine and mercaptoethanol.

  • PDF

Characterization of Alpha Amylase Producing Thielaviopsis ethacetica and Its Raw Starch Hydrolyzing Ability on Different Agricultural Substrates

  • Dissanayaka, Dissanayaka M.S.;De Silva, Sembukuttige N.T.;Attanayaka, D.P.S.T.G.;Kurera, Mihidukulasuriya J.M.S.;Fernando, Charakrawarthige A.N.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.412-422
    • /
    • 2019
  • The present study reports the morphological and molecular characterization of the fungal strain, CMSS06 and evaluates its raw starch hydrolyzing ability in four different agricultural substrates (rice bran, banana peel, cassava tubers, and coconut water). The potential use of each agricultural substrate to replace the expensive fermentation media was evaluated with six different fermentation media: rice bran (RB), banana peel (BP), cassava starch (CS), cassava in coconut water (CSCW), cassava in modified coconut water (CMCW), and pure Coconut water (CW). The fungal strain CMSS06 was identified as Thielaviopsis ethacetica by the analysis of the ITS sequences. The T. ethacetica alpha amylase enzyme exhibited maximum alpha amylase activity at 72 h, pH 7.0, and $40^{\circ}C$ on soluble starch. This species resulted in the highest enzyme activity (mU/ml) of 26.06, 10.89, 58.82, 14.2, and 54.67 with the RB, BP, CS, CSCW, and CMCW fermentation media, respectively. The results indicate that CS can be used as a carbon substrate and CMCW can be used to accelerate the fermentation by T. ethacetica. The enzyme was partially purified by 40-60% ammonium sulphate fraction, and it showed total enzyme activity, total protein content, specific activity, purification fold, and a recovery of 2400 mU, 30 mg, 80 mU/mg, 2.7, and 71.1%, respectively. The molecular mass of the T. ethacetica alpha amylase was estimated on SDS-PAGE, and two bands around 50 kDa and 70 kDa were identified. The present study implies that T. ethacetica can produce alpha amylase, and it can be used to hydrolyze raw starch during the fermentation processes.

Partial Purification and Some Properties of Amylases from Germinating Corn(Zea mays L.) (발아 옥수수 amylases의 정제 및 특성)

  • Lee, Tae-Ho;Jung, Tae-Yung;Park, Mi-yeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.6
    • /
    • pp.625-635
    • /
    • 1990
  • The purpose of this study was focused on investigation of biochemical properties of amylases in germinating corn(Zea mays L.) the amylase(I), (II) and (III) from germinating corn seeds were partially purified by ammonium sulfate precipitation, DEAE-Sephadex A-50 ion exchange column chromatography and Sephadex G-100 gel filtration. The last step was effective for separation of the corn amylases to a homogeneous slate. the purified amylase(I) was identified as a kind of $\alpha$-amylase from the fact that 5% starch solution was hydrolysed into mainly maltose and maltotetrose by it, and amylase(II) and amylase(III) were enzymes producing maltotetrose as main product. The molecular weight and specific activity of the amylase(I), (II) and (III) were determined to be 54,000 and 70.47 unit/mg, 39,000 and 62.98 unit/mg, and 51,000 and 80.39 unit/mg, respectively. It showed a tendency to increase the amylases activities in presence of Ba, Ca, Co and Fe groups, but inhibits in that of Ag, Sn, Hg and Zn groups, and amylase(I), (II) and (III) remained stable at pH 5-6 and 2$0^{\circ}C$ for 40 days in containing of 1 mM CaCl$_2$. The optimum pH and optimum temperatures were pH 6, pH 5 and pH 6 and 35$^{\circ}C$, 55$^{\circ}C$ and 55$^{\circ}C$, respectively. These results suggest that the amylase(I), (II) and (III) were different amylases.

  • PDF

Studies on $\alpha$-Amylase of Bacillus circulans F-2 (Part I) Purification of $\alpha$-amylase (Bacillus circulans F-2가 생산하는 $\alpha$-Amylase에 관한 연구 (제 1보) $\alpha$-Amylase의 정제)

  • ;Hajime Taniguchi;Yoshiharu Maruyama
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.185-190
    • /
    • 1981
  • 1. $\alpha$-amylase from B. circulans F-2 was purified with specific activity 55.0 u/mg. protein (about 23 times of the original specific activity) and the yield of 25.5%, by means of corn starch absorption, salting out with ammonium sulfate (80% saturation), gel filtration on Bio-Gel P-100 and DE-32 column chromatography. 2 The purified enzyme showed two closely migrated protin bands on polyacrylamide disc gel electrophoresis, both of which have amylase activity judging from the activity staining of the gel. On SDS-polyacrylamide disc gel electrophoresis, however, the purified enzyme showed a single band suggesting that those two bands are the charge isomers of an amlyase having the slightly different charge. 3. Plot of log mobility of two bands versus polyacrylamide gel concentration according to Hedrick and Smith gave the parallel lines indicating them to be charge isomers. 4. To confirm the action pattern of two enzyme protein bands, each band was separated and was eluted from the gel and eluates were incubated with soluble starch. Oligosaccharide pattern produced by each eluate was examined by paper chromatography. The eluates of two bands showed the same action pattern. 5. The maltohexaose was the only hydrolysis product of soluble starch in the early stage of hydrolysis.

  • PDF