• Title/Summary/Keyword: Pure lead

Search Result 174, Processing Time 0.022 seconds

Electrical Properties of (Ba,Ca)(Ti,Zr)O3 Ceramics for Bimorph-type Piezoelectric Actuator

  • Shin, Sang-Hoon;Yoo, Ju-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.226-229
    • /
    • 2014
  • In this study, lead-free $(Ba_{0.85}Ca_{0.15})(Ti_{1-x}Zr_x)O_3$ ceramics and a bimorph-type piezoelectric actuator were fabricated using the normal oxide-mixed sintering method, and their dielectric properties, microstructure, and displacement properties were investigated. From the results of X-ray diffraction, the pattern of the specimen has a pure perovskite structure. In addition, no secondary impurity phases were found. The excellent piezoelectric coefficient of $d_{33}=454pC/N$, the electromechanical coupling factor $k_p=0.51$, the dielectric constant ${\varepsilon}_r=3,657$, the mechanical quality factor $Q_m=239$, and $T_c$(Tetragonal-Cubic) =$90^{\circ}C$ were shown at x= 0.085. ${\Delta}k_p/k_p20^{\circ}C$ and ${\Delta}f_r/f_r20^{\circ}C$ showed the maximum value of -0.255 and 0.111 at $-20^{\circ}C$ and $80^{\circ}C$, respectively. The maximum total-displacement was $60{\mu}m$ under the input voltage of 50 V. As a result, it is considered that lead-free $(Ba_{0.85}Ca_{0.15})(Ti_{1-x}Zr_x)O_3$ ceramics is a promising candidate for piezoelectric actuator application for x= 0.085.

Piezoelectric Properties of NKN-BZT Ceramics Sintered with CuO and ZnO Additives (CuO와 ZnO 첨가에 따른 NKN-BZT 세라믹스의 압전 특성)

  • Lee, Seung-Hwan;Baek, Sang-Don;Lee, Dong-Hyun;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.636-640
    • /
    • 2011
  • The lead-free $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-(hereafter NKN-BZT) CuO, ZnO-doped ceramics were prepared using a conventional mixed oxide method. NKN-BZT ceramics doped CuO, ZnO have superior structural and electrical properties than pure NKN-BZT ceramics. For the NKN-BZT-ZnO ceramics sintered at $1,120^{\circ}C$, piezoelectric constant ($d_{33}$) of sample showed the optimum values of 172 pC/N. The $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Ba(Zr_{0.52},Ti_{0.48})O_3$-ZnO ceramics are a promising candidate for lead-free piezoelectric materials.

A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE (가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구)

  • Kim, Tae-In
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF

Preparation and Structure Properties of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 Perovskites

  • Kareem Ali Jasim;Hind Abdulmajeed Mahdi;Rafah Ismael Noori;Marwa Ayad Abdulmajeed
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.367-371
    • /
    • 2023
  • In this study we examine variations in the structure of perovskite compounds of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 synthesized using the solid state reaction method. The samples' compositions were assessed using X-ray fluorescence (XRF) analysis. The La: Ba: Ca: Cu ratios for samples LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 were found by XRF analysis to be around 1:2:0:2, 1:2:1:3, and 1:2:2:5, respectively. The samples' well-known structures were then analyzed using X-ray diffraction. The three samples largely consist of phases 1202, 1213, and 1225, with a trace quantity of an unknown secondary phase, based on the intensities and locations of the diffraction peaks. According to the measured parameters a, b, and c, every sample has a tetragonal symmetry structure. Each sample's mass density was observed to alter as the lead oxide content rose. Scanning electron microscope (SEM) images of the three phases revealed that different Ca-O and Cu-O layers can cause different grain sizes, characterized by elongated thin grains, without a preferred orientation.

Synthesis and Analysis of the Impact of Partial Mercury Replacement with Lead on the Structural and Electrical Properties of the Hg1-xPbxBa2Ca2Cu3O8+δ Superconductor

  • Kareem Ali Jasim;Chaiar Abdeen Zaynel Saleh;Alyaa Hamid Ali Jassim
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • In this investigation, samples of the chemical (Hg1-xPbxBa2Ca1.8Mg0.2Cu3O8+δ) were prepared utilizing a solid-state reaction technique with a range of lead concentrations (x = 0.0, 0.05, 0.10, and 0.20). Specimens were pressed at 8 tons per square centimeter and then prepared at 1,138 K in the furnace. The crystalline structure and surface topography of all samples were examined using X-ray diffraction (XRD) and atomic force microscopy (AFM). X-ray diffraction results showed that all of the prepared samples had a tetragonal crystal structure. Also, the results showed that when lead was partially replaced with mercury, an increase in the lead value impacted the phase ratio, and lattice parameter values. The AFM results likewise showed excellent crystalline consistency and remarkable homogeneity during processing. The electrical resistivity was calculated as a function of temperature, and the results showed that all samples had a contagious behavior, as the resistivity decreased with decreasing temperature. The critical temperature was calculated and found to change, from 102, 96, 107, and 119 K, when increasing the lead values in the samples from 0.0 to 0.05, 0.10, and 0.20, respectively.

A study on electrochemical protection diagrams of steel in nitric and sulfuric acid solutions (질산과 황산 용액중의 철강의 전기방식도에 관한 연구)

  • 전대희;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.43-63
    • /
    • 1989
  • Various kinds of corrosion prevention methods have been developed. It is known that the method of electrochemical protection is more effective and economical than any other method on the large scale metal structures in corrosive solutions. Strong acid solutions such as nitric and sulfuric acid solutions are often used in industries, and the expensive stainless steel is almost exclusively used for the equipment that comes in contact with such acid solutions. However, it is more reasonable that carbon steel is used rather than stainless steel depending upon concentration of those acid solutions from the economical viewpoint. In this study, the typical strong acid solution such as nitric and sulfuric acid solutions are chosen for the experiment and the selected materials of specimen are the stainless steels of SUS 304L and SUS 316L, the carbon steels of SS 41, SM 50 and RA 32, and highly pure lead. Electrochemical protection diagrams can be drawn with data from the external cathodic and anodic polarization curves of SUS 304L, SUS 316L and SM 50 steels in 5-60% nitric acid solutions and from those polarization curves of SS 41, RA 32, SM 50 and SUS 316L steels, and highly pure lead in 2.5-98% sulfuric acid solutions at the slow scanning rate. The data obtained with using the determination method of the optimum cathodic protection potential, the Tafel extrapolation method and the characteristics of anodic polarization curves. The main results obtained from the diagrams are as follows: 1) In nitric acid solution : (1) Corrosion potentials exist in each of those corrosion zones on the stainless steels in the lower concentration than about 12% solutions and on the high tensile strength steels in the lower concentration than about 30% solutions, but the corrosion current (density) in each zone is small on the above mentioned former steels and large on the latter ones. (2) The stainless steels can be self-passivated in the higher concentration than 15% solutions, and the high tensile strength steels gives rise to the same phenomenon in the higher concentration than 35% solutions. (3) The stainless steels in the lower concentration than 60% solutions and the high tensile strength steels in the higher concentration than 35% solutions can be used without protection, but the latter steels must ve protected anodically in the lower conccentration than about 30% solutions. 2) In sufuric acid solution : (1) The carbon steels can be self-passivated in the higher concentration than 45% solutions, and the SUS 316L steel in higher concentration than 75% solutions and the lead in all concentration solutions also gives rise to the same phenomenon. (2) The lead in the lower concentration than 80% solutions and the SUS 316L steel in the higher concentration than 80% solutions can be used without protection. (3) The carbon steels in the higher concentration than 50% solutions also can be used without protecting economically, but the SUS 316L steel in the 20-70% solutions are considerably corrosive without protecting anodically.

  • PDF

Electrical properties of PZN-PZT thick films formed by aerosol deposition process (에어로졸 증착법에 의해 제조된 PZN-PZT 후막의 전기적특성)

  • Tungalaltamir, Ochirkhuyag;Jang, Joo-Hee;Park, Yoon-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.183-188
    • /
    • 2020
  • Lead zinc niobate (PZN)-added lead zirconate titanate (PZT) thick films with thickness of 5~10 ㎛ were fabricated on silicon and sapphire substrates using aerosol deposition method. The contents of PZN were varied from 0 %, 20 % and to 40 %. The PZN-added PZT film showed poorer electrical properties than pure PZT film when the films were coated on silicon substrate and annealed at 700℃. On the other hand, the PZN-added PZT film showed higher remanent polarization and dielectric constant values than pure PZT film when the films were coated on sapphire and annealed at 900℃. The ferroelectric and dielectric characteristics of 20 % PZN-added PZT films annealed at 900℃ were compared with the result values obtained from bulk ceramic specimen with same composition sintered at 1200℃. As annealing temperature increased, dielectric constant increased. These came from enhanced crystallization and grain growth by post heat treatment.

Characteristics of electrically conductive adhesives filled with silver-coated copper

  • Nishikawa, Hiroshi;Terad, Nobuto;Miyake, Koich;Aoki, Akira;Takemoto, Tadashi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.217-220
    • /
    • 2009
  • Conductive adhesives have been investigated for use in microelectronics packaging as a lead-free solder substitute due to their advantages, such as low bonding temperature. However, high resistivity and poor mechanical behavior may be the limiting factors for the development of conductive adhesives. The metal fillers and the polymer resins provide electrical and mechanical interconnections between surface mount device components and a substrate. As metal fillers used in conductive adhesives, silver is the most commonly used due to its high conductivity and the stability. However the cost of conductive adhesives with silver fillers is much higher than usual lead-free solders and silver has poor electro-migration performance. So, copper can be a promising candidate for conductive filler metal due to its low resistivity and low cost, but oxidation causes this metal to lose its conductivity. In this study, electrically conductive adhesives (ECAs) using surface modified copper fillers were developed. Especially, in order to overcome the problem associated with the oxidation of copper, copper particles were coated with silver, and the silver-coated copper was tested as a filler metal. Especially the effect of silver coating on the electrical resistance just after curing and after aging was investigated. As a result, it was found that the electrical resistance of ECA with silver-coated copper filler was clearly lower and more stable than that of ECA with pure copper filler after curing process. And, during high temperature storage test, the degradation rate of electrical resistance for ECA with silver coated copper filler was quite slower than that for ECA with pure copper filler.

  • PDF

Comparative Evaluation of Shielding Performance according to the Characteristics of Eco-friendly Shielding Material Tungsten (친환경 차폐재료 텅스텐 특성에 따른 차폐성능 평가)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.10
    • /
    • pp.129-136
    • /
    • 2021
  • Radiation shields used in medical institutions mainly use lead to manufacture products and fitments. Although lead has excellent processability and economic efficiency, its use is being reduced due to environmental issues when it is disposed of. In addition, when used for a long time, there is a limit to using it as a shielding film, shielding wall, medical device parts, etc. due to cracking and sagging due to gravity. To solve this problem, copper, tin, etc. are used, but tungsten is mostly used because there is a difficulty in the manufacturing process to control the shielding performance. However, it is difficult to compare with other shielding materials because the characteristics according to the type of tungsten are not well presented. Therefore, in this study, a medical radiation shielding sheet was manufactured in the same process using pure tungsten, tungsten carbide, and tungsten oxide, and the particle composition and shielding performance of the sheet cross-section were compared.As a result of comparison, it was found that the shielding performance was excellent in the order of pure tungsten, tungsten carbide, and tungsten oxide.

Enhancing Die and Wire Bonding Process Reliability: Microstructure Evolution and Shear Strength Analysis of Sn-Sb Backside Metal (다이 및 와이어 본딩 공정을 위한 Sn-Sb Backside Metal의 계면 구조 및 전단 강도 분석)

  • Yeo Jin Choi;Seung Mun Baek;Yu Na Lee;Sung Jin An
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.170-174
    • /
    • 2024
  • In this study, we report the microstructural evolution and shear strength of an Sn-Sb alloy, used for die attach process as a solder layer of backside metal (BSM). The Sb content in the binary system was less than 1 at%. A chip with the Sn-Sb BSM was attached to a Ag plated Cu lead frame. The microstructure evolution was investigated after die bonding at 330 ℃, die bonding and isothermal heat treatment at 330 ℃ for 5 min and wire bonding at 260 ℃, respectively. At the interface between the chip and lead frame, Ni3Sn4 and Ag3Sn intermetallic compounds (IMCs) layers and pure Sn regions were confirmed after die bonding. When the isothermal heat treatment is conducted, pure Sn regions disappear at the interface because the Sn is consumed to form Ni3Sn4 and Ag3Sn IMCs. After the wire bonding process, the interface is composed of Ni3Sn4, Ag3Sn and (Ag,Cu)3Sn IMCs. The Sn-Sb BSM had a high maximum shear strength of 78.2 MPa, which is higher than the required specification of 6.2 MPa. In addition, it showed good wetting flow.