• Title/Summary/Keyword: Pure Volume

Search Result 350, Processing Time 0.019 seconds

NEW VOLUME COMPARISON WITH ALMOST RICCI SOLITON

  • azami, Shahroud;Hajiaghasi, Sakineh
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.839-849
    • /
    • 2022
  • In this paper we consider a condition on the Ricci curvature involving vector fields which enabled us to achieve new results for volume comparison and Laplacian comparison. These results in special case obtained with considering volume non-collapsing condition. Also, by applying this condition we get new results of volume comparison for almost Ricci solitons.

A Study on the Variation of Tensile Ductility in Porous Sintered Pure Aluminum (다공성 소결 순 Al에서 인장연성 변화에 관한 연구)

  • Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.93-99
    • /
    • 2018
  • An analytical solution for the tensile ductility in porous ductile materials was derived based on an Irwin's approach of the elastic-plastic deformation in fracture mechanics. This was in good agreement with the experimental results of a tensile ductility in a sintered pure Al, and could solve the discrepancies in the Brown and Embury, or the McClintock models. This model was also offered as an advanced analytical solution considering the effect of stress triaxiality of pore tip in addition to pore interactions, material properties of matrix, and local deformation effect around pore. The evaluation of an analytical solution in the sintered pure Al powder compacts showed that the tensile ductility depends not only on the volume fraction of pores, but also on the pore size and on the mechanical properties of the matrix. The tensile ductility of the sintered pure Al compacts decreased rapidly with the increasing of a pore volume fraction, despite of the excellent tensile ductility of the matrix. This significant decrease in the tensile ductility was mainly attributed to the low yield strength of the matrix and small pore size. Particularly, the effects of the large radius and high volume fraction of the pore on the tensile ductility in Al-Form, were thus reasonably predicted by this analytical equation.

One Step Measurements of hippocampal Pure Volumes from MRI Data Using an Ensemble Model of 3-D Convolutional Neural Network

  • Basher, Abol;Ahmed, Samsuddin;Jung, Ho Yub
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.22-32
    • /
    • 2020
  • The hippocampal volume atrophy is known to be linked with neuro-degenerative disorders and it is also one of the most important early biomarkers for Alzheimer's disease detection. The measurements of hippocampal pure volumes from Magnetic Resonance Imaging (MRI) is a crucial task and state-of-the-art methods require a large amount of time. In addition, the structural brain development is investigated using MRI data, where brain morphometry (e.g. cortical thickness, volume, surface area etc.) study is one of the significant parts of the analysis. In this study, we have proposed a patch-based ensemble model of 3-D convolutional neural network (CNN) to measure the hippocampal pure volume from MRI data. The 3-D patches were extracted from the volumetric MRI scans to train the proposed 3-D CNN models. The trained models are used to construct the ensemble 3-D CNN model and the aggregated model predicts the pure volume in one-step in the test phase. Our approach takes only 5 seconds to estimate the volumes from an MRI scan. The average errors for the proposed ensemble 3-D CNN model are 11.7±8.8 (error%±STD) and 12.5±12.8 (error%±STD) for the left and right hippocampi of 65 test MRI scans, respectively. The quantitative study on the predicted volumes over the ground truth volumes shows that the proposed approach can be used as a proxy.

Combustion Characteristics of Fish Oil in a Constant Volume Combustion Bomb (정용연소기에 있어서 어유의 연소특성)

  • 서정주
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.184-190
    • /
    • 1992
  • The combustion characteristics, ignition delay, p-t, dp/dt, Q-t of diesel oil and fish oil blended diesel oils was investigated according to pressure and temperature in a constant volume combustion bomb. The results are as follows: 1) The influence of temperature and pressure on the ignition delay was almost constant in high temperature, regardless of the blending rates, and the ignition delay was shortest in the 60% blend. 2) The maximum pressure was high in order of with pure diesel oil, with the 20% blend and the 60% blend. 3) The rate of pressure rise was high in order of with pure diesel oil, with the 20% blend and the 60% blend. The rate of maximum pressure rise was significantly higher with pure diesel oil than with two blends. 4) The amount of accumulative heat release was large in order of with pure diesel oil, with the 20% blend and the 60% blend.

  • PDF

Postcracking Torsional Stiffness of Reinforced Concrete Beams under Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 균열후 비틀림 강성)

  • 음성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.51-58
    • /
    • 1991
  • In staically indeterminate structures torsional stiffness is an important factor for prediction of mechanical behavior at all loading stages in reinfored concrete beams, which also for calculation of torsional moment. This paper proposes equation for postcracking torsional stiffness of reinforced concrete beams under pure torsion, which is derived considering the equilibrium and compatibility condition for shear panel based on the variable angle space truss model. The equation describes well the effect according to the variation of aspect ratio and steel volume ratio per unit concrete volume. It agress with experimental results in this paper as well as available literature.

  • PDF

The Proposition of Conditionally Pure Confidence in Association Rule Mining

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1141-1151
    • /
    • 2008
  • Data mining is the process of sorting through large amounts of data and picking out useful information. One of the well-studied problems in data mining is the exploration of association rules. An association rule technique finds the relation among each items in massive volume database. Some interestingness measures have been developed in association rule mining. Interestingness measures are useful in that it shows the causes for pruning uninteresting rules statistically or logically. This paper propose a conditional pure confidence to evaluate association rules and then describe some properties for a proposed measure. The comparative studies with confidence and pure confidence are shown by numerical example. The results show that the conditional pure confidence is better than confidence or pure confidence.

  • PDF

Effect of Nitrogen Volume in Ar-N2 Shielding Gas on Microstructure and Hardness of GTA Welded Pure Ti (순 Ti GTA 용접부의 미세조직과 경도에 미치는 Ar-N2 보호가스 중 질소량의 영향)

  • An, Hyun-Jun;Jeon, Ae-Jeong;Hong, Jae-Keun;Jeong, Bo-Young;Lee, Jong-Sub;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.70-75
    • /
    • 2012
  • In this study, effect of nitrogen volume in the shielding gas of Ar-$N_2$ mixing gas on the bead shape, hardness and microstructure of GTA welds of 3mm thick Commercial Pure Ti was investigated. As the nitrogen volume increased, the welding current for full penetration was reduced and hardness in the fusion zone significantly increased compared with that of the base metal, but there is no difference in the hardness of HAZ. Microstructure in the fusion zone with pure Ar gas changed from equiaxed alpha of the base metal to serrated alpha. On the other hand, microstructure using Ar-$N_2$ mixing gas changed to acicular alpha. With the increasing of nitrogen content, the amount of acicular alpha increased and the size of that was fine.

반응표면 분석법을 이용한 광학활성 styrene oxide의 생산조건 최적화

  • Lee, Eun-Yeol;Yun, Seong-Jun;Bae, Hyeon-Cheol;Gang, Jin-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.593-596
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis and various biological methods have been investigated for the production of chiral epoxides. In this work, enantioselective resolution of racemic styrene oxide was investigated using an isolated Aspergillus niger sp. for the production of optically pure (S) -styrene oxide. The enantioselectivity and initial hydrolysis rates of racemic substrate were highly dependent on the pH, temperature, and the volume ratio of cosolvent. The experimental sets of pH, temperature, and the volume ratio of cosolvent were designed using central composite experimental design, and the reaction conditions were optimized using response surface analysis. The optimal conditions of pH, temperature, and the volume ration of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4 %(v/v), respectively, and optically pure (S)-styrene oxide (> 99% ee) could be obtained with the 35 % yield by microbial enantioselective hydrolysis reaction.

  • PDF

Experimental Study on Film Boiling of CuO-Water Nanofluid Droplets (산화구리-순수 물 나노유체 액적의 막비등에 관한 실험적 연구)

  • Yeung Chan Kim
    • Journal of ILASS-Korea
    • /
    • v.29 no.3
    • /
    • pp.134-139
    • /
    • 2024
  • An experimental study was conducted on the film boiling of nanofluid droplets at a surface temperature range of 300 to 500℃. The nanofluid was made by mixing pure water with copper oxide powder of diameter of 80 nm. The initial volume of the nanofluid droplet ranged from about 21 to 44 ㎕, and the volume, base diameter, and time were measured during the evaporation process. It was found that nanofluid droplets evaporate faster as the surface temperature increases. Also experimental results showed the droplets evaporate quickly at the beginning of evaporation, but as the volume of the droplets decreases, the evaporation rate gradually slows down, and this trend becomes stronger as the surface temperature increases. In addition, the evaporation rate of nanofluid droplets was slightly faster than that of pure water droplets, this was believed to be because the contact area of nanofluid droplets increased.