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NEW VOLUME COMPARISON WITH

ALMOST RICCI SOLITON

Shahroud azami and Sakineh Hajiaghasi

Abstract. In this paper we consider a condition on the Ricci curvature

involving vector fields which enabled us to achieve new results for vol-
ume comparison and Laplacian comparison. These results in special case

obtained with considering volume non-collapsing condition. Also, by ap-
plying this condition we get new results of volume comparison for almost

Ricci solitons.

1. Introduction

Let (Mn, g) be a complete smooth n-dimensional Riemannian manifold with
a smooth vector field X ∈ χ(M) and a smooth function λ : M → R. Then
(Mn, g) is said to define an almost Ricci soliton if

Ricg +
1

2
LXg = λg,

and it is called a gradient almost Ricci soliton if the vector field X is the
gradient of a smooth function f , i.e., X = ∇f .

Volume comparison has a wide role in differential geometry and analysis on
manifolds. In several years, many different results with different conditions
on Ricci curvature and scalar curvature on manifolds have been shown for
volume comparison. The first result is related to Bishop and Gromov’s in [5]
that depends on Ricci curvature which is bounded from below. Actually, they
compared volume of R-balls in a manifold Mn with R-balls in it’s model space
Mn
H . Then Qian [9] improved the results with Ricci curvature of the weighted

Laplacian ∆h, i.e., ∆h = ∆−∇h · ∇.
John Lott [7] studied on metric measure space (M,φdvolM ) with ∞-Bakry-

Émery Ricci curvature

Ric∞ = Ric−Hess(lnφ),

Received March 19, 2021; Revised September 27, 2021; Accepted December 8, 2021.
2020 Mathematics Subject Classification. 53C21, 58C25.

Key words and phrases. Volume comparison, Bakry-Émery Ricci curvature.
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and obtained important results on comparison geometry. Then Wei and Wylie
in [11] expanded the Qian’s results on volume comparison with considering the
lower bound for this Ricci curvature.

Hu et al. [6] by considering a lower bound for scalar curvature showed that
volume of balls with conformally compact metric g̃ is closed to volume of balls
with complete noncompact Riemannian metric g. In [14] Zhu and Zhang, under

a lower bound for Bakry-Émery Ricci curvature

Ric +
1

2
LV g,

obtained volume comparison, Laplacian comparison, isoperimetric inequality
and gradient bounds. In fact, they showed that

V ol(B(x, r2))

rn2
≤ eC(n,λ,K,α,ρ)[λ(r22−r

2
1)+K(r2−r1)1−α]V ol(B(x, r1))

rn1

for 0 < r1 < r2 ≤ 1, where λ, α,K and C are constants.
Wei Yuan in [13] compared the volume of balls in Riemannian manifold M

with a V -static metric g̃ and a Rimannian metric g. For study more about
volume comparison with another condition in details you could see [1–4, 8, 10,
12,15].

It is interesting to extend the Ricci condition in [14] for an almost Ricci
soliton.

Let (M, g) be a Riemannian manifold of dimension n with fixed base point
O ∈M . Consider the following basic conditions for Ricci curvature tensor,

Ric +
1

2
LV g ≥ −λg,(1)

and

|V |(y) ≤ K

d(y,O)α
.(2)

Here λ is a non-negative smooth function and V is a smooth vector field on M ,
also we denote the distance from O to y by d(y,O), and K ≥ 0 and 0 ≤ α < 1
are constants. Later we will use a notation C(a1, a2, . . . , an) for constants that
depend on parameters a1, a2, . . . , an where may it changes line to line.

Motivated by above works, we prove:

Theorem 1.1 (Volume comparison 1). We assume (1) and (2), and denote by
ω(s, ·) the volume element of the metric g on M in geodesic polar coordinates.
Then for any 0 < s1 < s2, we have

ω(s2, ·)
sn−1

2

≤ eC(α)Ks1−α2 +
∫ s2
s1

1
s2

∫ s
0
λt2dtdsω(s1, ·)

sn−1
1

,(3)

and specially by letting s1 → 0, we get

ω(s, ·) ≤ eC(α)Ks1−α+ 1
s2

∫ s
0
λt2dtsn−1, ∀s > 0,(4)
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and hence

V ol(B(x, r)) ≤ eC(α)Kr1−α+ 1
r2

∫ r
0
λt2dtV ol(S

n−1)

n
rn, ∀r > 0.(5)

Note that Sn−1 is the unit sphere in Rn.

For the next theorems we considered an upper bound K1 for λ.

Theorem 1.2 (Volume comparison 2). Let the assumptions (1) and (2) hold.
(a) Let the conditions on Theorem 1.1 and volume noncollapsing condition

V ol(B(x, r)) ≥ ρ hold for any x ∈ M . Then for any 0 < r1 < r2 ≤ 1, we get
the ratio bound as follows:

(6)
V ol(B(x, r2))

rn2
≤ eC(n,K,K1,α,ρ)[K1(r22−r

2
1)+K(r2−r1)1−α]V ol(B(x, r1))

rn1
.

(b) Specially, assume that the Bakry-Émery Ricci curvature tensor Ric +
HessL implies that

(7) Ric + HessL ≥ −λg,
and

(8) |∇L(y)| ≤ K

d(y,O)α

for all y ∈ M , a fixed point O ∈ M , and constant K ≥ 0 and α ∈ [0, 1]. Then
the results of Theorem 1.1 and part (a) of this theorem hold.

For gradient case, i.e., V = ∇L, we prove:

Theorem 1.3. Consider the following condition on Bakry-Émery Ricci cur-
vature

(9) Ric + HessL ≥ −λg.
We assume the following conditions on L:

(10) |L(y)− L(z)| ≤ K2d(y, z)α and sup
x∈M,0≤r≤1

(rβ‖∇L‖∗q,B(x,r)) ≤ K3

for any y, z ∈ M with d(y, z) ≤ 1. Here K2,K3 ≥ 0, 0 < α < 1, 0 < β < 1,
and q ≥ 1 are constants, and

‖∇L‖∗q,B(x,r) =

(∮
B(x,r)

|∇L|q(y)dV (y)

) 1
q

.

(a) We denote the distance from any point y to some fixed point x by s =
d(x, y) and suppose that γ : [0, s] → M is a normal minimal geodesic with
γ(0) = x and γ(s) = y. Then in distribution sense we have

(11) ∆s− n− 1

s
≤ K1s+

4K2

s1−α + 〈∇L,∇s〉, ∀s < 1,

moreover

(12)
∂

∂s

ω(s, θ)

sn−1
≤ [K1s+

4K2

s1−α + 〈∇L,∇s〉]ω(s, θ)

sn−1
.
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Here, we denote the volume element in the geodesic polar coordinates by ω =
ω(s, θ) which is regarded as 0 on the cut locus.

(b) For any 0 < r1 < r2 ≤ 1, we have

(13)
V ol(B(x, r2))

rn2
≤ e[K1(r22−r

2
1)+K3(r2−r1)1−β+4K2(r2−r1)α]V ol(B(x, r1))

rn1
.

In above theorems if the function λ is constant, Theorem 2.2 and Theorem
2.7 in [14] can be recovered by our result.

2. Proofs

To prove our main results, we need the following technical proposition.

Proposition 2.1. If conditions (1) and (2) hold for an n-dimensional Rie-
mannian manifold (M, g), then in the distribution sense we get the following
inequality,

∆s− n− 1

s
≤ 1

s2

∫ s

0

λt2dt+ 〈V,∇s〉+
C(α)K

sα
,(14)

where s = d(y, x) is the distance from any point y to some fixed point x.

Proof. Since the complement of the cut locus is star shaped, we can establish
inequality (14) in the distribution and so we may just prove the inequality (14)
for smooth points of s. By using Bochner formula for s and Cauchy-Schwarz

inequality |∇2s|2 ≥ (∆s)2

n−1 , we have

1

s2

∂

∂s
(s2∆s) +

1

n− 1
(∆s− n− 1

s
)2 ≤ n− 1

s2
− Ric(∇s,∇s).(15)

We multiply the sides of the inequality by s2 and then integrating from 0 to s,
it yields

∆s ≤ n− 1

s
− 1

s2

∫ s

0

t2Ric(γ
′
(t), γ

′
(t))dt.(16)

We can choose an orthonormal frame {e1, e2, . . . , en} with e1 = γ
′
(t) at any

point γ(t). Then due to the (1), we get

Ric(γ
′
(t), γ

′
(t)) = Ric(e1, e1)

≥ −λ− 1

2
LV g(e1, e1)

= −λ− 〈∇Ve1 , e1〉
= −λ− e1〈V, e1〉+ 〈V,∇e1e1〉

= −λ− ∂

∂t
〈V, γ

′
(t)〉.

By this, (16) becomes

∆s− n− 1

s
≤ 1

s2

∫ s

0

[
t2
∂

∂t
〈V, γ

′
(t)〉+ λt2

]
dt
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≤ 1

s2

∫ s

0

λt2dt+
1

s2

[
t2〈V, γ

′
(t)〉(γ(t)) |s0 −2

∫ s

0

t〈V, γ
′
(t)〉dt

]
≤ 1

s2

∫ s

0

λt2dt+ 〈V,∇s〉 − 2

s2

∫ s

0

t〈V, γ
′
(t)〉dt.(17)

We denote d0 = d(x,O) and to continue proving, we consider two cases.
Case 1: If s ≤ d0, we get the following inequality by the fact that d(γ(t), O) ≥
d0 − t.

−2

s

∫ s

0

t〈V, γ
′

(t)〉dt ≤ 1

s2

∫ s

0

2t · k

(d0 − t)α
dt

≤ C(α)k

s
[−(d0 − t)1−α |s0]

=
C(α)k

s
[d1−α

0 − (d0 − s)1−α]

≤ C(α)k

sα
.(18)

Now we get

∆s− n− 1

s
≤ 1

s2

∫ s

0

λt2dt+ 〈V,∇s〉+
C(α)K

sα
.(19)

Case 2: If s > d0, then for any d0 ≤ t ≤ s, we have

d(γ(t), O) ≥ t− d0.

So, we get the same result for − 2
s2

∫ s
0
t〈V, γ′(t)〉dt and consequently we get

∆s− n− 1

s
≤
∫ s

0

λt2dt+ 〈V,∇s〉+
C(α)K

sα
.(20)

This completes the proof of the proposition. �

Proof of Theorem 1.1. First, by (14) we have

∂

∂s
ln(ω(s, ·)) =

ω
′
(s, ·)

ω(s, ·)
= ∆s

≤ n− 1

s
+

1

s2

∫ s

0

λt2dt+ 〈V,∇s〉+
C(α)K

sα
.(21)

Case 1: If s1 < s2 ≤ d0, by using triangle inequality for assumption (2), (21)
changes as

∂

∂s
ln(ω(s, ·)) ≤ n− 1

s
+

1

s2

∫ s

0

λt2dt+
K

(d0 − s)α
+
C(α)K

sα
.

By integrating from s1 to s2 of both sides, we get

ln
ω(s2, ·)
ω(s1, ·)

≤ ln(
s2

s1
)n−1 +

∫ s2

s1

1

s2

∫ s

0

λt2dtds+ C(α)K(s1−α
2 − s1−α

1 )

+ C(α)K[(d0 − s1)1−α − (d0 − s2)1−α]
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≤ ln(
s2

s1
)n−1 +

∫ s2

s1

1

s2

∫ s

0

λt2dtds+ C(α)Ks1−α
2

+ C(α)K(s2 − s1)1−α

≤ ln(
s2

s1
)n−1 +

∫ s2

s1

1

s2

∫ s

0

λt2dtds+ C(α)Ks1−α
2 .(22)

Specially for s1 ≤ d0 we get

ln
ω(d0, ·)
ω(s1, ·)

≤ ln(
d0

s1
)n−1 +

∫ d0

s1

1

s2

∫ s

0

λt2dtds+ C(α)Kd1−α
0 .(23)

Case 2: If d0 ≤ s1 < s2, then by fact that

〈V,∇s〉 ≤ |V |(γ(s)) ≤ K

(s− d0)α
,

we get the same results and for s2 ≥ d0, we have

ln
ω(s2, ·)
ω(d0, ·)

≤ ln(
s2

d0
)n−1 +

∫ s2

d0

1

s2

∫ s

0

λt2dtds+ C(α)Ks1−α
2 .(24)

Case 3: For s1 ≤ d0 ≤ s2, by (23) and (24), it yields

ln
ω(s2, ·)
ω(s1, ·)

≤ ln(
s2

s1
)n−1 +

∫ s2

s1

1

s2

∫ s

0

λt2dtds+ C(α)Ks1−α
2 .(25)

This finished the proof of the theorem. �

In the following we consider the volume comparison Theorem 1.1 by non-
negative function λ that bounded above with K1.

lemma 2.2. Let the following volume noncollapsing condition hold

(26) V ol(B(x, r)) ≥ ρ, ∀x ∈M,

for some constant ρ > 0. If the conditions (1) and (2) hold, then for any
q ∈ (0, nα ) we get

(27) sup
x∈M,0<r≤1

rα‖V ‖∗q,B(x,r) ≤ C(n,K,K1, α, ρ, q)K,

where

‖V ‖∗q,B(x,r) =

(∮
B(x,r)

|V |qdg
) 1
q

=

(
1

V ol(B(x, r))

∫
B(x,r)

|V |qdg
) 1
q

.

Proof. By assumption (2), for any 0 < r ≤ 1, we obtain

(28) ‖V ‖∗q,B(x,r) ≤
(

1

V ol(B(x, r))

∫
B(x,r)

Kq

d(y,O)αq
dg(y)

) 1
q

.

Case 1: For d(x,O) ≤ 2r, we know B(x, r) ⊂ B(O, 3r), then for any 0 < q <
n
α , we conclude that∫

B(x,r)

1

d(y,O)αq
dg(y) ≤

∫
B(O,3r)

1

d(y,O)αq
dg(y)
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≤ C(n, α, q)e[C(α)Kr1−α+K1r]rn−αq.(29)

In fact, from (4), for any γ < n, we get

(30)

∫
B(O,r)

1

d(y,O)γ
dg(y) ≤ C(n · γ)e[C(α)Kr1−α+K1r]rn−γ .

So, by (4) and (26) for r ≤ 1 it follows

V ol(B(x, r)) =

∫
Sn−1

∫ r

0

ω(s, θ)dsdθ

= r

∫
Sn−1

∫ 1

0

ω(rt, θ)dtdθ

≥ r
∫
Sn−1

∫ 1

0

1

eC(α)K+K1
rn−1ω(t, θ)dtdθ

=
ρ

eC(α)K+K1
rn.(31)

By this and (29), we get

1

V ol(B(x, r))

∫
B(O,r)

1

d(y,O)αq
dg(y) ≤ C(n, α, q)e[C(α)Kr1−α+K1r]

× eC(α)K+K1

ρ
r−αq.

Case 2: For d(x,O) > 2r, by triangle inequality we have d(y,O) ≥ r for all
y ∈ B(x, r). Then

(32)

∫
B(x,r)

1

d(y,O)αq
dg(y) ≤ r−αqV ol(B(x, r)),

so, in each case we get that

‖V ‖∗q,B(x,r) ≤ C(n,K,K1, α, ρ, q)Kr
−α. �

Proof of Theorem 1.2. Let ψ = (∆s− n−1
s )+. By (14), we get

(33) ψ ≤ K1s+
C(α)K

sα
+ |V |.

We deduce from (27) that

(34)

∮
B(x,r)

|V |dg ≤ C(n,K,K1, α, ρ, q)K

rα
.

Letting Q(r) = V ol(B(x,r))
rn , we get, from (33) and (34),

d

dr
Q(r) ≤ 1

rn+1

∫
Sn−1

∫ r

0

s(K1s+
C(α)K

sα
+ |V |)ω(s, θ)dsdθ

≤ [K1r +
C(n,K,K1, α, ρ, q)K

rα
]Q(r).

By integrating of both sides the proof is complete. �
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At the end of the proof of part (b) you can get the results by setting V = ∇L
in (1).

Remark 2.3. Note that in particular, we can improve the Volume comparison
theorems without assumption (26).

Corollary 2.4. Assume that (1) holds and moreover

(35) |V | ≤ K.
Then we get the following conclusions.

(a) In distribution sense we have

(36) ∆s− n− 1

s
≤ K1s+K.

(b) For volume element in geodesic polar coordinate with any 0 < s1 < s2

we get

(37)
ω(s2, ·)
sn−1

2

≤ e2Ks2+K1s
2
2
ω(s1, ·)
sn−1

1

.

In general, by letting s1 → 0, we have

(38) ω(s, ·) ≤ e2Ks+K1s
2

sn−1, ∀s > 0,

and then

(39) V ol(B(x, r)) ≤ e2Kr+K1r
2 V ol(Sn−1)

n
rn, ∀r > 0.

(c) According to the (39), for any 0 < r1 < r2 we have

(40)
V ol(B(x, r2)

rn2
≤ e[2K(r2−r1)+K1(r22−r

2
1)]V ol(B(x, r1))

rn1
.

Proof. Since |V | is bounded, Lemma 2.2 holds without any other condition
for α = 0 and q = ∞. The proof of this corollary is similar to the proof of
Proposition 2.1, Theorem 1.1 and Theorem 1.2 as α = 0. �

Proof of Theorem 1.3. (a) We just prove the inequalities at smooth points s.
First by (16) we have

(41) ∆s ≤ n− 1

s
− 1

s2

∫ s

0

t2Ric(
∂

∂t
,
∂

∂t
)ds.

From (9), along the geodesic γ(t), we get

(42) Ric(∂t, ∂t) ≥ −λ−HessL(∂t, ∂t) = −λ− d2

dt2
L(γ(t)).

By (42) and integration of two sides, we rewrite (41) as following

∆s− n− 1

s
≤ 1

s2

∫ s

0

[
t2
d2

dt2
L(γ(y)) + λt2

]
dt

≤ K1s+
1

s2

[
t2
d

dt
L(γ(t)) |s0 −2

∫ s

0

t
d

dt
L(γ(t))dt

]
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≤ K1s+ 〈∇L,∇s〉 − 2

s2

∫ s

0

t
d

dt
L(γ(t))dt

= K1s+ 〈∇L,∇s〉 − 2

s
L(γ(s)) |s0 +

2

s2

∫ s

0

L(γ(t))dt

= K1s+ 〈∇L,∇s〉 − 2

s
[L(γ(s))− L(γ(0))]

+
2

s2

∫ s

0

[L(γ(t))− L(γ(0))]dt

≤ K1s+ 〈∇L,∇s〉+
4K2

s1−α .

From this together with (∂sω = ∆sω), we can obtain (12).
(b) According to (11), we have

ψ ≤ K1s+
4K2

s1−α + |∇L|,

and by (10), we get

(43)

∮
B(x,r)

|∇L|dV ≤
(∮

B(x,r)

|∇L|qdV
) 1
q

≤ K3

rβ
.

By considering Q(r) = V ol(B(x,r))
rn and (43) we have

d

dr
Q(r) ≤ 1

rn+1

∫
sn−1

∫ r

0

s(K1s+
4K2

s1−α + |∇L|)ω(s, θ)dsdθ

≤ (K1r +
4K2

r1−α +
K3

rβ
)Q(r).

The proof of (b) finishes by integrating both sides of the above inequality. �

For V = ∇L similar to Lemma 2.8 in [14] we have the following lemma due
to bounded λ, which cause the assumption (10) be a weaker condition than (8)
and (26).

lemma 2.5. Assume that (9), (8) and (26) hold. Then for q ∈ (n, nα ), we have

(44) sup
x∈M,0<r≤1

rα‖∇L‖∗q,B(x,r) ≤ C(n,K,K1, α, ρ)K,

by the fact that

(45) |L(y)− L(z)| ≤ 2K

1− α
d(y, z)1−α

for any y, z ∈M .

Corollary 2.6 (Gradient Almost Ricci soliton). Let (M, gij) be an almost Ricci
soliton satisfying in following

(46) R+ |∇L|2 − 2λL = 0
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for positive bounded function λ. Moreover assume that

(47) |L| ≤ K, inB(O, 2δ)

for some fixed point O ∈M and radius δ.
Let Λ(n, λ,K) be the following constant

Λ(n, λ,K) =
√

2K1K.

Then the following statements are valid.
(a) In distribution sense given that |∇L| ≤ Λ(n, λ,K), we have

(48) ∆s− n− 1

s
≤ K1s+ 2

√
2K1K.

(b) Let ω(s, ·) be the volume element of the metric g under geodesic polar
coordinates. Then we get

(49)
ω(s2, ·)
sn−1

2

≤ e2
√

2K1Ks2+K1s
2
2
ω(s1, ·)
sn−1

1

for any 0 < s1 < s2 < d(x, ∂B(O, δ)), specially by letting s1 → 0, for any
0 < s < d(x, ∂B(O, δ)), we have

(50) ω(s, ·) ≤ e2
√

2K1Ks+K1s
2

sn−1,

and hence

(51) V ol(B(x, r)) ≤ C(n)e2
√

2K1Kr+K1r
2

rn

for any 0 < r < d(x, ∂B(O, δ)).
(c) For 0 < r1 < r2 < d(x, ∂B(O, δ)) and any point x ∈ B(O, δ), we have

(52)
V ol(B(x, r2))

rn2
≤ e[2

√
2K1K(r2−r1)+K1(r22−r

2
1)]V ol(B(x, r1))

rn1
.
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