• 제목/요약/키워드: Pure Co

Search Result 866, Processing Time 0.026 seconds

Observation of Gas Hydrate Formation by View Cell (View cell에 의한 가스 하이드레이트 생성 관찰)

  • Cho Byoung-Hak;Lee Young-Chul;Mo Yung-Gi;Baek Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.24-30
    • /
    • 2004
  • Gas hydrate formation process is studied in this paper. Natural gas was introduced into both pure water and water added anionic surfactant(promotor) at 276.65 K and 6 MPa. Gas hydrate nuclei was easily generated by instantaneous agitation. Gas hydrate film was formed on the interface of water and gas. The very thin film which was instantly covered the surface of the water, followed by generation of the clear film layer. Whiskery crystal of gas hydrate was created more actively in the water added naionic surfactant than in the pure water. Whiskery hydrate formed in the pure water looks like short and thick thread colony while the one shoes long and thin thread colony in the water added promoter.

  • PDF

Development of Volume Modified Sorption Model and Prediction for Volumetric Strain of Coal Matrix (흡착에 의한 석탄암체의 부피변화가 고려된 흡착모델 개선 및 부피변형률 예측)

  • Kim, Sang-Jin;Sung, Won-Mo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2015
  • We proposed the improved Langmuir adsorption relations considering volume change effect of coal matrix during primary production of CBM and Enhanced-CBM with injection of carbon dioxide or CCS in coalseam but also volumetric strain. To verify this model, experimental data of pure gas adsorption such as $CO_2$, $CH_4$, and $N_2$ on coals were used to compare conventional Langmuir model with this model. From the results, we obtained that the larger adsorption capacity of coal and the higher adsorption affinity of gas, the larger error occur with Langmuir model. Using this model, however, we found not only substantially better fit in all condition but also reasonable volumetric strain of the coal matrix. We also applied this volume modified pure gas adsorption model to the IAS model to describe gas adsorption and volumetric strain for mixed gas. This modified-IAS model fitting experimental data by Hall et al(1994) improved accuracy of mixed gas adsorption calculation compared with conventional model.

Changes in the Red Cell Volume and the Plasma Chloride Level under the High $CO_2$ Concentration in vitro (고농도(高濃度)의 $CO_2$가 적혈구용적(赤血球容積) 및 혈장(血漿) Choloride 치(値)에 미치는 영향(影響))

  • Kim, Sung-Jo;Lee, Jae-Bok;Lee, Woo-Suck;Chung, Pock-Tuck
    • The Korean Journal of Physiology
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 1970
  • The changes in the red cell volume and the plasma chloride level were measured when the blood $CO_2$ content was altered by equilibration with the atmospheric air or pure $CO_2$ for 20 minutes. The red cell volume was expressed in terms of hematocrit and mean corpuscular volume (M.C.V.). The results obtained were as follows. 1) On equilibration with the atmospheric air, the MCV and the plasma chloride level were $91.6{\pm}1.26\;c.{\mu}$ and $110.7{\pm}6.28mEq/L.$ respectively. 2) On equilibration with pure $CO_{2}$, the MCV and the plasma chloride level were $109.6{\pm}2.0\;c.{\mu}$ and $90.7{\pm}5.17\;mEq/L.$ respectively. 3) When the blood was subjected to equilibration with the atmospheric for air 20 minutes after equilibration with pure $CO_{2}$ for the same period of time the MCV and the plasma chloride level were $89.9{\pm}6.34\;c.{\mu}$ and $100.3{\pm}5.50\;mEq/L.$ respectively. From the above results it can be concluded that an increase of the blood $CO_2$ content in the experimental condition causes definitely a decrease of the plasma chloride level and a concomitant increase of the red cell volume, and that a decrease of the blood content $CO_2$ in the experimental condition causes definitely an increase of the plasma chloride level and a concomitant decrease of the red cell volme. Apparantly there exists a parallel relationship between the extent of the decrease of the plasma chloride level and that of the increase of the red cell volume when the blood $CO_2$ content increased in the experimental condition. When the blood $CO_2$ content decreased, the extent of the decrease of the red cell volume exceeds that of the increase of the plasma chloride level.

  • PDF

Comparative Toxicity Studies of Ultra-Pure Ag, Au, Co, and Cu Nanoparticles Generated by Laser Ablation in Biocompatible Aqueous Solution

  • Kim, Yea-Seul;Kim, Kuk-Ki;Shin, Seon-Mi;Park, Seung-Min;Hah, Sang-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3265-3268
    • /
    • 2012
  • Nanoparticles (NPs) are increasingly used in consumer products, which have aroused many concerns and debates regarding their fate in biological systems from a point of their safety/toxicity. Although a number of studies on the biological effects of NPs have been published, these are often complicated by the possible toxicity of conventional NPs, caused by contamination with chemical precursors or additives during their synthesis and/or purification procedures. To explicitly understand the toxicity basis of NPs, it is necessary to directly address a main problem related to their intrinsic/inherent toxicity and/or incompatibility with biological objects. The present study is designed to take advantage of a novel laser-assisted method called laser ablation to generate Ag, Au, Co, and Cu NPs in biocompatible aqueous solution, and to evaluate the toxicity of the resulting ultra-pure NPs. Our results show that the ultra-pure NPs with nascent surfaces possess moderate cytotoxicity to human cells in a cell-dependent manner.

Evaluation of Course Stability Performance for Tanker using CFD (CFD를 이용한 Tanker의 침로안정성 평가)

  • Hong, Chun-Beom;Yang, Hee-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.523-529
    • /
    • 2008
  • The course stability performance for tankers is evaluated by computational fluid dynamics. In the present work, a Reynolds averaged Navier-Stokes (RANS) code is applied to a maneuvering problem covering the pure drift and yaw motions. The purposes of this study are to evaluate the hydrodynamic force in the bare hull (AFRAMAX) in pure drift and yaw motion and to provide information about the trends in the forces and moments when the rudder angles are varied. The flow simulation is performed by FLUENT. The CFD code is examined to find the optimistic computational condition such as size of grid, turbulence model and initial condition. The hydrodynamic derivatives in drift and pure yaw motion are estimated by the numerical simulation, and then the stability levers are calculated. It is confirmed that the computations show the superiority and inferiority of course stability performance according to the hull forms. Finally, the CFD code is applied to the estimation of the rudder forces when the rudder angles are varied. The propeller effect expressed by the body force distribution is also included.

Ethanol Fermentation of the Enzymatic Hydrolysates from the Products Pretreated using [EMIM]Ac and Its Co-Solvents with DMF

  • Han, Song-Yi;Park, Chan-Woo;Park, Jae-Bum;Ha, Suk-Jin;Kim, Nam-Hun;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.62-66
    • /
    • 2020
  • Ethanol fermentation of the enzymatic hydrolysates from the products pretreated using 1-ethyl-3-methyl-imidazolium acetate ([EMIM]Ac) and its co-solvents with dimethylformamide (DMF) was conducted using Saccharomyces cerevisiae (D452-2). The optical density change due to the yeast cell growth, the consumption amount of monosugars (glucose, xylose), the concentration of acetate, and ethanol production yield were investigated. The co-solvent system lowered inhibition of the growth of the cells. The highest concentration of glucose (7.8 g/L) and xylose (3.6 g/L) was obtained from the enzymatic hydrolysates of the pretreated product by pure [EMIM]Ac. The initial concentration of both monosugars in the enzymatic hydrolysates was decreased with increasing fermentation time. Ethanol of Approximately 3 g/L was produced from the enzymatic hydrolysates by pure [EMIM]Ac and co-solvent with less than 50% DMF.

Self-organized Spectrum Access in Small-cell Networks with Dynamic Loads

  • Wu, Ducheng;Wu, Qihui;Xu, Yuhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.1976-1997
    • /
    • 2016
  • This paper investigates the problem of co-tier interference mitigation for dynamic small- cell networks, in which the load of each small-cell varies with the number of active associated small-cell users (SUs). Due to the fact that most small-cell base stations (SBSs) are deployed in an ad-hoc manner, the problem of reducing co-tier interference caused by dynamic loads in a distributed fashion is quite challenging. First, we propose a new distributed channel allocation method for small-cells with dynamic loads and define a dynamic interference graph. Based on this approach, we formulate the problem as a dynamic interference graph game and prove that the game is a potential game and has at least one pure strategy Nash equilibrium (NE) point. Moreover, we show that the best pure strategy NE point minimizes the expectation of the aggregate dynamic co-tier interference in the small-cell network. A distributed dynamic learning algorithm is then designed to achieve NE of the game, in which each SBS is unaware of the probability distributions of its own and other SBSs' dynamic loads. Simulation results show that the proposed approach can mitigate dynamic co-tier interference effectively and significantly outperform random channel selection.

Development of New Analytical Method of Vitamins Using Supercritical Fluid (초임계 유체를 이용한 비타민류의 새로운 분석법 개발)

  • Pyo, Dongjin;Park, Dongjin;Kim, Hohyun;Lee, Hakju;Lee, Taejoon
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 1997
  • Supercritical Fluid Chromatography(SFC) has become a technique for solving problems that are difficult to be monitored by other chromatographic methods. However, the most widely used fluid, is no more polar than hexane. Polar samples which are difficult to be analyzed with pure supercritical $CO_2$ because of their high polarity can be separated by adding polar modifiers to supercritical $CO_2$. In this paper, a new method for monitoring the mobile phase composition in modified supercritical fluid chromatography was developed. The amount of water dissolved in supercritical $CO_2$ was measured by amperometric microsensor which is made of thin film of perfluorosulfonate ionomer(PFSI). The amount of water dissolved in supercritical $CO_2$ stayed constant for a much longer time than with a saturator column. With this new mixing device, we could get good resolutions for vitamins which are difficult to separate with pure $CO_2$.

  • PDF

Hydrogen Evolution Ability of Selected Pure Metals and Galvanic Corrosion Behavior between the Metals and Magnesium

  • Luo, Zhen;Song, Kaili;Li, Guijuan;Yang, Lei
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.323-329
    • /
    • 2020
  • The cathodic hydrogen evolution ability of different pure metals and their long term galvanic corrosion behavior with pure Mg were investigated. The hydrogen evolution ability of pure Ti, Al, Sn and Zr is weak, while that of Fe, W, Cr, and Co is very strong. Initial polarization test could not completely reveal the cathodic behavior of the tested metals during long term corrosion. The cathodic hydrogen evolution ability may vary significantly in the long term galvanic tests for different metals, especially for Al whose cathodic current density reduced to 1/50 of the initial value. The anodic polarization shows that Al and Sn as alloying elements are supposed to provide relatively good passive effect for Mg alloy, while Ag can provide a slight passive effect and Zn has little passive effect.