• Title/Summary/Keyword: Pure Co

Search Result 866, Processing Time 0.03 seconds

Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery (초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Ji, Sung Hwa;Jo, Wan Taek;Kim, Hyun Hyo;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.337-342
    • /
    • 2018
  • Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.

Non-invasive Transcutaneous pCO2 Gas Monitoring System for Arterial Blood Gas Analysis

  • Bang, Hyang-Yi;Kang, Byoung-Ho;Eum, Nyeon-Sik;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.311-316
    • /
    • 2011
  • Monitoring the carbon dioxide concentration in arterial blood is vital for the evaluation and prevention of pulmonary disease. Yet, domestic pure arterial blood carbon dioxide sensor technologies are not being developed, instead all sensors are imported. In this paper, we develop a real time monitoring system for arterial blood partial pressure of carbon dioxide($pCO_2$) gas from the wrist by using a carbon micro-heater. The micro-heater was fabricated with a thickness of 0.3 ${\mu}m$ in order to collect the carbon dioxide under the skin. The micro-heater has been designed to perform temperature compensation in order to prevent damage to the skin. Two clinical trials of the system were undertaken. As a result, we demonstrated that a portable, transcutaneous carbon dioxide analysis($TcpCO_2$) device produced domestically is possible. In addition, this system reduced the analysis time significantly. Carbon films could reduce the unit price of these sensors by replacing the gold film used in foreign models. Also, we developed a real time monitoring system which can be used with optical biosensors for medical diagnostics as well as gas sensors for environmental monitoring.

EMISSION ANALYSIS OF A MEDIUM CAPACITY DIESEL ENGINE USING MAHUA OIL BIODIESEL

  • Sharma, Ajay Kumar;Das, L.M.;Naik, S.N.;Chauhan, Bhupendra Singh;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.136-140
    • /
    • 2013
  • The stringent emission norms cannot be met through engine design and exhaust after treatment alone. Use of oxygenated fuel like biodiesel as a alternative to diesel may be the best way to reduce emissions today. In this study, Diesel fuel and pure biodiesel (mahua oil) were tested on a single cylinder naturally-aspirated direct-injection diesel engine. The study aims to investigate the effects of the mahua oil biodiesel on existing diesel engine emissions. The effect of test fuels on engine emissions like CO, HC, $CO_2$, NOx and smoke emissions was investigated with respect to the load on engine. Smoke opacity of Diesel engine was lower in case of biodiesel of mahua oil as compare to mineral diesel. NOx emissions was little higher during the whole range of loading, which is a typical characteristic of biodiesel. However the increments are within in the narrow range. $CO_2$ emissions was bit higher which is the indication of better combustion due to presence of rich oxygen in the mixture, it results in the low values of CO and HC during the whole range of experiments. Thus considering environmental norms most of the engine emissions, it can be concluded and biodiesel derived from mahua oil could be used in a conventional diesel engine without any modification.

The Use of Demand Controlled Ventilation in Multi-Purposed Facility (수요기반 환기량 조절법 (DCV)의 다중이용시설 적용방안)

  • Jeong, Jae-Weon;No, Sang-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.111-116
    • /
    • 2008
  • The objective of this paper was to show the possibility of demand-controlled ventilation (DCV) using the current Korean ventilation standard for multi-purposed facilites. Two attractive DCV approaches; $CO_2$-DCV and RFID-DCV were applied to DCV simulations for a theoretical public assembly space served by a dedicated outdoor air system (DOAS) with enthalpy recovery device. A numerical model for predicting realtime occupant number, ventilation rate, and $CO_2$ concentration under given conditions was developed using a commercial equation solver program. It was found that the current ventilation standard causes unstable ventilation system control in DCV applications, especially under $CO_2$-DCV. It is because the ventilation rate (per person) used in Korea is the sum of the outdoor air required to remove or dilute air contaminants generated by both occupant and building itself, and not a pure function of occupant numbers. Finally, it makes DCV control unstable when ventilation flow is regulated only by the number of occupants. In order for solving this problem, current Korean ventilation standard was modified as a form of ASHRAE Standard 62.1-2007 showing good applicability to various DCV approaches. It was found that this modification enhances applicability of the current ventilation standard to DCV significantly.

  • PDF

Preparation of Waterborne Polyurethane/Silica Nanocomposites Using Tetraethylorthosilicate (Tetraethylorthosilicate를 사용한 수분산 폴리우레탄/실리카 Nanocomposite의 제조)

  • Shin, Yong Tak;Hong, Min Gi;Choi, Jin Joo;Lee, Won Ki;Lee, Gyoung Bae;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.428-433
    • /
    • 2010
  • Waterborne polyurethane(WPU) was synthesized from isophorone diisocyanate(IPDI), poly(tetramethylene glycol)(PTMG), dimethylol propionic acid(DMPA), triethylamine(TEA), ethylenediamine(EDA) and 3-aminopropyl triethoxysilane(APS) as a coupling agent. Subsequently, WPU/silica nanocomposites with different silica contents(0 to 8 wt%) were prepared by performing sol-gel reactions with tetraethylorthosilicate in the WPU matrix. The average particle size of the nanocomposite solutions increased with increasing TEOS content. Also, the prepared nanocomposites showed better thermal stability than pure WPU.

Preparation and Properties of Aminosilane Terminated Waterborne Polyurethane (Aminosilane Terminated 수분산 폴리우레탄 코팅 용액의 제조 및 특성)

  • Shin, Yong Tak;Hong, Min Gi;Choi, Jin Joo;Lee, Won Ki;Lee, Gyoung Bae;Yoo, Byung Won;Lee, Myung Goo;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.434-439
    • /
    • 2010
  • NCO terminated polyurethane prepolymers were synthesized from isophorone diisocyanate(IPDI), poly(tetramethyleneglycol)(PTMG) and dimethylol propionic acid(DMPA). Subsequently, aminosilane terminated prepolymers were prepared by capping the NCO groups of polyurethane prepolymers with different moles of aminopropyl triethoxysilane(0~0.02 mole) as a coupling agent. The average particle size of the silylated polyurethane solutions increased with increasing APS content. Also, the prepared coating films showed better thermal stability and pencil hardness than pure waterborne polyurethane.

A SECURITY ARCHITECTURE FOR THE INTERNET OF THINGS

  • Behrens, Reinhard;Ahmed, Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6092-6115
    • /
    • 2017
  • This paper demonstrates a case for an end-to-end pure Application Security Layer for reliable and confidential communications within an Internet of Things (IoT) constrained environment. To provide a secure key exchange and to setup a secure data connection, Transport Layer Security (TLS) is used, which provides native protection against replay attacks. TLS along with digital signature can be used to achieve non-repudiation within app-to-app communications. This paper studies the use of TLS over the JavaScript Object Notation (JSON) via a The Constrained Application Protocol (CoAP) RESTful service to verify the hypothesis that in this way one can provide end-to-end communication flexibility and potentially retain identity information for repudiation. As a proof of concept, a prototype has been developed to simulate an IoT software client with the capability of hosting a CoAP RESTful service. The prototype studies data requests via a network client establishing a TLS over JSON session using a hosted CoAP RESTful service. To prove reputability and integrity of TLS JSON messages, JSON messages was intercepted and verified against simulated MITM attacks. The experimental results confirm that TLS over JSON works as hypothesised.

Synthesis of Vaterite Powders with a Spherical Shape by the Precipitation Method (침전법에 의한 구형 Vaterite분말의 합성)

  • 윤봉구;신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1208-1212
    • /
    • 2003
  • CaCO$_3$ powders were synthesized by aqueous solution reaction of CaC1$_2$ㆍ2$H_2O$-(NH$_4$)$_2$CO$_3$ system with NH$_4$OH at 45$^{\circ}C$ and pHs 8, 9, 10, and 11 and in the concentration range of 0.1∼5 M and its polymorphism, morphology and size were investigated. In order to investigate the influence of pH on nucleation, pH was adjusted before and after reaction respectively. When pH was adjusted after reaction a formation ratio of vaterite was increased with increasing pH and concentration but vaterite was formed with calcite. But, when pH was adjusted before reaction, the formation rate of vaterite was increased with increasing pH and concentration. resulting in a phase-pure vaterite with a spherical shape and 2∼5 $\mu\textrm{m}$ in size. It was found that solubility of alkaline vaterite was decreased with increasing OH- ions in the high pH solution. When pH was adjusted before nucleation in the high concentration range, in particular, decreasing of solubility disturbed transformation of initially formed numerous vaterite to calcite.

Effects of Co-solvent on Dendritic Lithium Growth Reaction (리튬 덴드라이트의 성장 반응에 미치는 공용매의 영향)

  • Kang, Jihoon;Jeong, Soonki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.172-178
    • /
    • 2013
  • This study examined the electrochemical deposition and dissolution of lithium on nickel electrodes in 1 mol $dm^{-3}$ (M) $LiPF_6$ dissolved in propylene carbonate (PC) containing different 1,2-dimethoxyethane (DME) concentrations as a co-solvent. The DME concentration was found to have a significant effect on the reactions occurring at the electrode. The poor cycleability of the electrodes in the pure PC solution was improved considerably by adding small amounts of DME. This results suggested that the dendritic lithium growth could be suppressed by using co-solvents. After hundredth cycling in the 1 M $LiPF_6$/PC:DME (67:33) solution, almost no dead lithium has been found from the disassembled cell, resulting from suppression of dendritic lithium growth. Scanning electron microscopy revealed that dendritic lithium formation was greatly affected by the ratio of DME. Raman spectroscopy results suggested that the structure of solvated lithium ions is a crucial important factor in suppressing dendritic lithium formation.

Effect of CO in Anode Fuel on the Performance of Polymer Electrolyte Membrane Fuel Cell (수소연료 중 일산화탄소의 고분자전해질 연료전지에 대한 영향)

  • Kwon, Jun-Taek;Kim, Jun-Bum
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.291-298
    • /
    • 2008
  • Carbon monoxide(CO) is one of the contamination source in reformed hydrogen fuel with an influence on performance of polymer electrolyte membrane fuel cell(PEMFC). The studies of CO injection presented here give information about poisoning and recovery processes. The aim of this research is to investigate cell performance decline due to carbon monoxide impurity in hydrogen. Performance of PEM fuel cell was investigated using current vs. potential experiment, long time(10 hours) test, cyclic feeding test and electrochemical impedance spectra. The concentrations of carbon monoxide were changed up to 10 ppm. Performance degradation due to carbon monoxide contamination in anode fuel was observed at high concentration of carbon monoxide. The CO gas showed influence on the charge transfer reaction. The performance recovery was confirmed in long time test when pure hydrogen was provided for 1 hour after carbon monoxide had been supplied. The result of this study could be used as a basis of various reformation process design and fuel quality determination.