References
-
K. Kanamura, S. Shiraishi, and Z. Takehara, "Electrochemical deposition of lithium metal in nonaqueous electrolyte containing
$(C_2H_5)_4NF(HF)_4$ additive", Journal of Fluorine Chemistry, Vol. 87, 1998, pp. 235-243. https://doi.org/10.1016/S0022-1139(97)00151-6 - K. Shin, K. Jung, S. Yoon, S. Yeon, J. Shim, J. Joen, C. Jin, Y. Kim, K. Park, and S. Jeong, "Electrochemical characteristics of porous modified silicon impregnated with metal as anode materials for lithium secondary batteries", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 4, 2012, pp. 390-396. https://doi.org/10.7316/KHNES.2012.23.4.390
- L. Yang, C. Smith, C. Patrissi, C. R. Schumacher, and B. L. Lucht, "Surface reactions and performance of non-aqueous electrolytes with lithium metal anodes", Journal of Power Sources, Vol. 185, 2008, pp. 1359-1366. https://doi.org/10.1016/j.jpowsour.2008.09.037
- S. -K. Jeong, H. -Y. Seo, D. -H. Kim, H. -K. Han, J. -G. Kim, Y. B. Lee, T. Abe, and Z. Ogumi, "Suppression of dendritic lithium formation by using concentrated electrolyte solutions", Electrochemistry Communications, Vol. 10, 2008, pp. 635-638. https://doi.org/10.1016/j.elecom.2008.02.006
- C. M. Lopez, J. T. Vaughey, and D. W. Dees, "Insights into the role of interphasial morphology on the electrochemical performance of lithium electrodes", Journal of The Electrochemical Society, Vol. 159, No. 6, 2012, pp. A873-A886. https://doi.org/10.1149/2.100206jes
- R. Mogi, M. Inaba, T. Abe, and Z. Ogumi, "In situ atomic force microscopy observation of lithium deposition at an elevated temperature", Journal of Power Sources, Vol, 97-98, 2001, pp. 265-268. https://doi.org/10.1016/S0378-7753(01)00511-0
- M. Ishikawa, M. Kanemoto, and M. Morita, "Control of lithium metal anode cycleability by electrolyte temperature", Journal of Power Sources, Vol. 81-82, 1999, pp. 217-220. https://doi.org/10.1016/S0378-7753(98)00213-4
- V. R. Koch, S. B. Brummer, "The effect of desiccants on the cycling efficiency of the lithium electrode in propylene carbonate-based electrolytes", electrochimica acta, Vol. 23, No. 1, 1978, pp. 55-62. https://doi.org/10.1016/0013-4686(78)87033-9
- S. -K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, "Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions", Electrochimica Acta, Vol. 47, 2002, pp. 1975-1982. https://doi.org/10.1016/S0013-4686(02)00099-3
-
Y. Kameda, Y. Umebayashi, M. Takeuchi, M. A. Wahab, S. Fukuda, S. Ishiguro, M. Sasaki, Y. Amo, and T. Usuki, "Solvation structure of
$Li^+$ in concentrated$LiPF_6$ -propylene carbonate solutions", The Journal of Physical Chemistry B, Vol. 111, 2007, pp. 6104-6109. https://doi.org/10.1021/jp072597b - C. S. Kim and S. M. Oh, "Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes", electrochimica acta, Vol. 45, No. 13, 2000, pp. 2101-2109. https://doi.org/10.1016/S0013-4686(99)00426-0
Cited by
- Electrochemical Redox Reactions of Lithium Ion on Nickel Electrode in Propylene Carbonate-Based Solutions vol.900, pp.1662-9752, 2017, https://doi.org/10.4028/www.scientific.net/MSF.900.93