• Title/Summary/Keyword: Purchase forecasting

Search Result 28, Processing Time 0.02 seconds

Features of the Architecture of Tourism and Tourist Complexes

  • Нnat, Galyna;Ivanochko, Ulyana;Solovii, Liubov;Petrenko, Yurii;Borutska, Yuliia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.117-122
    • /
    • 2022
  • One of the promising sectors of the economy today is tourism in all forms and types. The multiplier effect of tourism is huge: the income received from one tourist exceeds the amount of money spent by him at the location on the purchase of services and goods in the range from 1.5 to 4 times. Countries known as world centers of tourism have made it a state policy, taking on the functions of forecasting, coordinating and controlling. The architectural monuments of the city historical structure are a pretty resource for tourism. Cultural tourism as a type of sociocultural human activity is one of the popular and mass types of tourism. The number of people wishing to get acquainted with historical and cultural sights is growing every year. In the cultural aspect, tourism has an impact on the spiritual and material spheres of human life, his way of life, value system, social behavior.Thus, the main task of the study is to analyze the features of the architecture of tourism and tourist complexes. As a result of the study, current trends and prerequisites for the architecture of tourism and tourist complexes were investigated.

The Development of an Aggregate Power Resource Configuration Model Based on the Renewable Energy Generation Forecasting System (재생에너지 발전량 예측제도 기반 집합전력자원 구성모델 개발)

  • Eunkyung Kang;Ha-Ryeom Jang;Seonuk Yang;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.229-256
    • /
    • 2023
  • The increase in telecommuting and household electricity demand due to the pandemic has led to significant changes in electricity demand patterns. This has led to difficulties in identifying KEPCO's PPA (power purchase agreements) and residential solar power generation and has added to the challenges of electricity demand forecasting and grid operation for power exchanges. Unlike other energy resources, electricity is difficult to store, so it is essential to maintain a balance between energy production and consumption. A shortage or overproduction of electricity can cause significant instability in the energy system, so it is necessary to manage the supply and demand of electricity effectively. Especially in the Fourth Industrial Revolution, the importance of data has increased, and problems such as large-scale fires and power outages can have a severe impact. Therefore, in the field of electricity, it is crucial to accurately predict the amount of power generation, such as renewable energy, along with the exact demand for electricity, for proper power generation management, which helps to reduce unnecessary power production and efficiently utilize energy resources. In this study, we reviewed the renewable energy generation forecasting system, its objectives, and practical applications to construct optimal aggregated power resources using data from 169 power plants provided by the Ministry of Trade, Industry, and Energy, developed an aggregation algorithm considering the settlement of the forecasting system, and applied it to the analytical logic to synthesize and interpret the results. This study developed an optimal aggregation algorithm and derived an aggregation configuration (Result_Number 546) that reached 80.66% of the maximum settlement amount and identified plants that increase the settlement amount (B1783, B1729, N6002, S5044, B1782, N6006) and plants that decrease the settlement amount (S5034, S5023, S5031) when aggregating plants. This study is significant as the first study to develop an optimal aggregation algorithm using aggregated power resources as a research unit, and we expect that the results of this study can be used to improve the stability of the power system and efficiently utilize energy resources.

Forecasting of Customer's Purchasing Intention Using Support Vector Machine (Support Vector Machine 기법을 이용한 고객의 구매의도 예측)

  • Kim, Jin-Hwa;Nam, Ki-Chan;Lee, Sang-Jong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.137-158
    • /
    • 2008
  • Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.

Case Study of Appling Customer Information and Customer Management in Fashion Merchandising Process (패션머천다이징 프로세스에서의 고객정보 활용 및 고객관리에 관한 사례 연구)

  • Ko Eun-Ju;Yun Sun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.5 s.153
    • /
    • pp.788-799
    • /
    • 2006
  • The purpose of this study was to analyze fashion merchandising process, to apply customer information in merchandising process and to examine customer management strategies of fashion industry in on-line and off-line channel. In depth, face to face interviews with structured questionnaires were conducted with MD and customer managers from selected 4 brands, one from each categories of men's, women's, casual and sports wear. Key findings of the study were as follows: First, they followed fashion merchandising process of 18 steps and collected trend information and sales data were applied to planning, selling/promoting process to plan season concept, design, and promotion activity. Second, commonly applied customer information types in fashion merchandising process were all from indirect information collected from sales data and forecasting companies. However, casual and sports wear conducted consumer monitoring activity f3r collecting customer data directly from customer participation. Third, in off-line channel, customers are segmented by amount of purchase they make in a specific time period and all the categories show high interest in valuable customers. However, only men's and woman's wear conducted promotion activities for valuable customers as a differentiated marketing strategy. In on-line channel, companies were interacting with the customers through internet web site to determine their demands. In conclusion, this study has significance in that it propose the necessity and strategy of differentiated customer management approaching by analyzing and comparing fashion merchandising activity process cases.

The study of foreign exchange trading revenue model using decision tree and gradient boosting (외환거래에서 의사결정나무와 그래디언트 부스팅을 이용한 수익 모형 연구)

  • Jung, Ji Hyeon;Min, Dae Kee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.161-170
    • /
    • 2013
  • The FX (Foreign Exchange) is a form of exchange for the global decentralized trading of international currencies. The simple sense of Forex is simultaneous purchase and sale of the currency or the exchange of one country's currency for other countries'. We can find the consistent rules of trading by comparing the gradient boosting method and the decision trees methods. Methods such as time series analysis used for the prediction of financial markets have advantage of the long-term forecasting model. On the other hand, it is difficult to reflect the rapidly changing price fluctuations in the short term. Therefore, in this study, gradient boosting method and decision tree method are applied to analyze the short-term data in order to make the rules for the revenue structure of the FX market and evaluated the stability and the prediction of the model.

A deep learning analysis of the KOSPI's directions (딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측)

  • Lee, Woosik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.287-295
    • /
    • 2017
  • Since Google's AlphaGo defeated a world champion of Go players in 2016, there have been many interests in the deep learning. In the financial sector, a Robo-Advisor using deep learning gains a significant attention, which builds and manages portfolios of financial instruments for investors.In this paper, we have proposed the a deep learning algorithm geared toward identification and forecast of the KOSPI index direction,and we also have compared the accuracy of the prediction.In an application of forecasting the financial market index direction, we have shown that the Robo-Advisor using deep learning has a significant effect on finance industry. The Robo-Advisor collects a massive data such as earnings statements, news reports and regulatory filings, analyzes those and recommends investors how to view market trends and identify the best time to purchase financial assets. On the other hand, the Robo-Advisor allows businesses to learn more about their customers, develop better marketing strategies, increase sales and decrease costs.

Forecasting Future Market Share between Online-and Offline-Shopping Behavior of Korean Consumers with the Application of Double-Cohort and Multinomial Logit Models (생잔효과와 다중로짓모형으로 분석한 구매형태별 시장점유율 예측)

  • Lee, Seong-Woo;Yun, Seong-Do
    • Journal of Distribution Research
    • /
    • v.14 no.1
    • /
    • pp.45-65
    • /
    • 2009
  • As a number of people using the internet for their shopping steadily rises, it is increasingly important for retailers to understand why consumers decide to buy products via online or offline. The main purpose of this study is to develop and test a model that enhance our understanding of how consumers respond future online and offline channels for their purchasing. Rather than merely adopting statistical models like most other studies in this field, the present study develops a model that combines double-cohort method with multinomial logit model. It is desirable if one can adopt an overall encompassing criterion in the study of consumer behaviors form diverse sales channels. This study uses the concept of cohort or aging to enable this comparison. It enables us to analyze how consumers respond to online and offline channels as people aged by measuring their shopping behavior for an online and offline retailers and their subsequent purchase intentions. Based on some empirical findings, this study concludes with policy implications and some necessary fields of future studies desirable.

  • PDF

An Expert System for the Estimation of the Growth Curve Parameters of New Markets (신규시장 성장모형의 모수 추정을 위한 전문가 시스템)

  • Lee, Dongwon;Jung, Yeojin;Jung, Jaekwon;Park, Dohyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.17-35
    • /
    • 2015
  • Demand forecasting is the activity of estimating the quantity of a product or service that consumers will purchase for a certain period of time. Developing precise forecasting models are considered important since corporates can make strategic decisions on new markets based on future demand estimated by the models. Many studies have developed market growth curve models, such as Bass, Logistic, Gompertz models, which estimate future demand when a market is in its early stage. Among the models, Bass model, which explains the demand from two types of adopters, innovators and imitators, has been widely used in forecasting. Such models require sufficient demand observations to ensure qualified results. In the beginning of a new market, however, observations are not sufficient for the models to precisely estimate the market's future demand. For this reason, as an alternative, demands guessed from those of most adjacent markets are often used as references in such cases. Reference markets can be those whose products are developed with the same categorical technologies. A market's demand may be expected to have the similar pattern with that of a reference market in case the adoption pattern of a product in the market is determined mainly by the technology related to the product. However, such processes may not always ensure pleasing results because the similarity between markets depends on intuition and/or experience. There are two major drawbacks that human experts cannot effectively handle in this approach. One is the abundance of candidate reference markets to consider, and the other is the difficulty in calculating the similarity between markets. First, there can be too many markets to consider in selecting reference markets. Mostly, markets in the same category in an industrial hierarchy can be reference markets because they are usually based on the similar technologies. However, markets can be classified into different categories even if they are based on the same generic technologies. Therefore, markets in other categories also need to be considered as potential candidates. Next, even domain experts cannot consistently calculate the similarity between markets with their own qualitative standards. The inconsistency implies missing adjacent reference markets, which may lead to the imprecise estimation of future demand. Even though there are no missing reference markets, the new market's parameters can be hardly estimated from the reference markets without quantitative standards. For this reason, this study proposes a case-based expert system that helps experts overcome the drawbacks in discovering referential markets. First, this study proposes the use of Euclidean distance measure to calculate the similarity between markets. Based on their similarities, markets are grouped into clusters. Then, missing markets with the characteristics of the cluster are searched for. Potential candidate reference markets are extracted and recommended to users. After the iteration of these steps, definite reference markets are determined according to the user's selection among those candidates. Then, finally, the new market's parameters are estimated from the reference markets. For this procedure, two techniques are used in the model. One is clustering data mining technique, and the other content-based filtering of recommender systems. The proposed system implemented with those techniques can determine the most adjacent markets based on whether a user accepts candidate markets. Experiments were conducted to validate the usefulness of the system with five ICT experts involved. In the experiments, the experts were given the list of 16 ICT markets whose parameters to be estimated. For each of the markets, the experts estimated its parameters of growth curve models with intuition at first, and then with the system. The comparison of the experiments results show that the estimated parameters are closer when they use the system in comparison with the results when they guessed them without the system.