• Title/Summary/Keyword: Pumping Station Design

Search Result 30, Processing Time 0.031 seconds

A Numerical Study for Optimum Design of Dust Separator Screen Based on Coanda Effect (코안다효과를 이용한 제진기 스크린의 최적설계를 위한 수치적 연구)

  • Yun, Seong-Min;Kim, Yong-Sun;Shin, Hee-Jea;Ko, Sang-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.177-185
    • /
    • 2018
  • There is a need to study dust separator screens with good drainage efficiency while effectively filtering suspended solids and other contaminants entering the intake pumping station, the drainage pumping station and the mediation pumping station, the cooling water inlet of the power plant, and the like. In this paper, Numerical studies were conducted for the optimal design of the dust separator screen using the Coanda effect. The shape of the dust separator screen is important, such as the right curvature radius $R_1$ at the top of the dust separator screen and the left curvature radius $R_2$ at the top, h is the height difference and shape between the screen and the accelerating plate, and ${\theta}$ is the inclination angle of the screen. A total of 4 shape factors were set and the effects of Coanda and drainage performance of each element were compared and analyzed, the optimum length and size of each shape element were derived by classifying the shape elements into direct and indirect influences. Finally, it was possible to effectively filter foreign matter by narrowing the screen spacing, and the drainage performance was analyzed and optimized through numerical studies of dust separator screen.

A New Control Technique of Drainage Pump Based on Fuzzy Control (퍼지제어기법을 사용한 우수배제 펌프의 조작기법 개발)

  • Lee, Won Hwan;Cho, Won Cheol;Shim, Jae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.107-114
    • /
    • 1992
  • With the increasing of impervious area and shortening of travel time, the risk of flooding in urban area becomes a serious problem in Seoul metropolitan area, and its alternatives are needed. In this study, one of urban flood alternatives, a fuzzy control technique is applied in pumping station to test its drainage capacity of inland inflow, and compared with existing pumping criteria (controled by water level). Three design rainfalls(10, 30, and 50 year) are applied to ILLUDAS model to calculate inflow in detention reservoir. To check the efficiency of fuzzy control, two fuzzy rules are used in the operation of pumping station. In these results, fuzzy control rules, based on the experiences of experts, show applicability in practice and effectiveness in inland flooding prevention.

  • PDF

Optimal Design of Hydraulic Device at the Seobyun Pumping Station using Genetic Algorithm (유전자 알고리즘을 이용한 서변 가압장 수리구조물의 최적설계)

  • Jeong, Bong-Seok;Kim, Ju-In;Kim, Sang-Hyeon;Park, Nam-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.289-298
    • /
    • 2000
  • In order to minimize the impact of water hammer In a pipeline, a determination of optimum position of hydraulic structures with best operation of pressure relief valve was explored at the Seobyun pumping station. Method of characteristics is used to simulate a surge impact originating from abrupt stop of pumping operation in a pipeline. Genetic algorithm shows a powerful capability in searching a global solution, especially for a nonlinear problem The application results suggests that the maximum positive pressure can be relaxed by decreasing the opening time of pressure relief valve, meanwhile the maximum negative pressure can be relaxed by increasing the opening time of pressure relief valve. This study shows that the integration of a genetic algorithm with a transient analysis technique such as method of characteristic can improve the design of hydraulic structure in a pipe network.

  • PDF

A Safety Evaluation of Detention Reservoirs at Seoul by New Pumping Criteria (우수배제 펌프의 조작기준에 따른 서울시 유수지의 안전검토)

  • Lee, Won Hwan;Park, Sang Deog;Shim, Jae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.141-150
    • /
    • 1992
  • Rapid change of urban area become a serious cause of disaster in existing drainage systems, and the practical alternatives in that situations are needed. The purpose of this study is to evaluate safety, one of drainage systems, detention reservoir and pumping station by new pumping criteria. New drainage pumping criteria, divided into two parts (rising limb and falling limb), which used in reservoir routing, shows more efficient flood prevention effect than existing criteria (based on the reservoir water level). To obtain the optimal range of flood prevention, sensitivity analysis of each inflow v.s. pumping capacity is tested. As a results, using 10 year design rainfall, 60% of detention reservoir and drainage pumping stations in Seoul are safe. In this results, there must be a fundamental and powerful counterplans to prevent inland flooding in Seoul metropolitan area.

  • PDF

A Study on Return Flow Ratio of Irrigation for a Paddy Field in Pumping Station by Water Balance Method (물수지분석 기법에 의한 양수장 몽리구역내 농업용수 회귀율 연구)

  • Choo, Tai-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.249-255
    • /
    • 2004
  • To investigate the return flow ratio of irrigation water, lots of observations were made during the irrigation periods in 2003 crop year. This Area is a portion of Dae-Am pumping station basin which is located in Changryung-gun, Gyeongnam province. A water balance analysis was performed for a paddy field in Dae-Am pumping station in the Nakdong river basin, which is constructed for irrigation water supply. Daily rainfall data in the this area were collected and irrigation water flow rate, drainage water flow rate, infiltration and evaportranspiration were measured in field area. Irrigation water flow rate and drainage water flow rate were continuously observed by water level logger(GTDL-L10) during the growing season. The infiltration and evaportranspiration were measured by cylindrical 300mm depletion meter and cylindrical 200mm infiltrometer, respectively. Total irrigation and drainage flows were 654.7mm and 281.2mm in 2003. Total infiltration and evaportranspiration were 36.0mm and 160.0mm respectively. The mean of the daily evaportranspiration rate was 4.3mmm/d. The prompt return flow and retard return flow ratio were 43.0% and 5.5%, respectively. Total return flow ratio was 48.5%. Therefore, it can be concluded that the amount of irrigation water was much higher than design standard or reference in this study. It means that this was caused by the inadequate water management practice in the area where water was oversupplied on farmers' request rather than following sound water management principles, and design standard should be changed in the future.

Optimal Design of Branched Water Supply System with GIS (GIS를 이용한 분기형 관로의 최적설계)

  • Kim, Joong-Hoon;Yeon, Sang-Ho;Geem, Zong-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.4 no.2 s.8
    • /
    • pp.55-61
    • /
    • 1996
  • The objective of this paper is to show an optimal design model for branched water supply system which also can find the optimal location of pumping stations using linear programming. GIS is utilized in this model to better handle the data and the results front the optimization. The developed model considers hydraulic influences of some appurtenances such as supply tunnels and a filtration plant The model also considers tunnel construction cost which should be treated differently from pipe construction cost Different from other models presently available, the model guarantees a nonnegative pressure at every junction node in the system. The objective function includes annual operation cost (electricity rate) ill addition to initial construction cost, thus producing a more reasonable decision. The model selects the optimal diameter not in the form of continuous number but in the form of commercial discrete diameter (pipe size) using the pipe lengths as decision variables instead of pipe diameters. The model not only determines the optimal pumping head for each pumping station but also finds the optimal location and number of pumping stations. GIS is used to handle hydraulic and budgetary data automatically and to visualize the results for the of optimal design of the system. The model has been applied to an existing water supply system. 'The results show that the optimization model with the aid of GIS is helpful in the decision-nulling process for the design of more economical systems, and can be dot into practice successfully.

  • PDF

A Study on the Total Head Decision of Pump for Regional Water Supply Facilities (광역상수도용 펌프의 전양정 결정에 관한 연구)

  • Kim, Kyung-Yup;Suh, Sang-Ho;Lee, Jung-Woo;Roh, Hyung-Woon;Kim, Sang-Gyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.165-170
    • /
    • 2001
  • An extensive range of pumping facilities are employed in the regional water supply system in metropolitan areas, and optimization and the systematic combination of the Pump facilities have direct bearing on the stability and economy of the water supply system concerned. These systems must be able to guarantee stability, efficiency and offer high reliability. Preparation of metropolitan area regional water supply system construction project must include a basic plan which takes into account the suitability of pumping facilities to be used, the environment in which facilities will be installed, man-power requirements and basic operational and management policies. This paper contains over-all analysis of the management of metropolitan area regional water supply systems as like Jayang, Paldang 1st pump station. In the study, it aims to prepare counterplan which will be operated and managed the pump upon the operational conditions and to suggest the proposal for water facilities codes to decides total head of pump in Korea.

  • PDF

Urban Runoff According to Rainfall Observation Locations (강우 측정 지점에 따른 도시 유역 유출량 변화 분석)

  • Hyun, Jung Hoon;Chung, Gunhui
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.305-311
    • /
    • 2019
  • Recently, global climate change causes abnormal weather and disaster countermeasures do not provide sufficient defense and mitigation because they were established according to the historical climate condition. Repeated torrential rains, in particular, are causing damage even in the robust urban flood defense system. Therefore, in this study, the change of runoff considering the spatial distribution of rainfall and urban characteristics was analyzed. For rainfall concentrated in small catchment, rainfall in the watershed must be accurately measured. This study is based on the rainfall data observed with Automated Surface Observing System (ASOS) and Automatic Weather Stations (AWS) provided by the Seoul Meteorological Administration. Effluent from the pumping station was estimated using the EPA-SWMM model and compared and analyzed. Catchments with rainwater pumping station are small with large portion of impermeable areas. Thus, when the ASOS data where is located from from the chatchment, runoff is often calculated using rainfall data that is different from rainfall in the catchment. In this study, the difference between rainfall data observed in the AWS near the catchment and ASOS away from the catchment was calculated. It was found that accurate rainfall should be used to operate rainwater pumping stations or forecast urban flooding floods. In addition, the results of this study may be helpful for estimating design rainfall and runoff calculation.

Methodology for Estimating Agricultural Water Supply in the Han River Basin (한강수계의 농업용수 공급량 조사방법의 개발)

  • Im, Sang-Jun;Park, Seung-U;Kim, Hyeon-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.765-774
    • /
    • 2000
  • The purpose of this study are to develop a realistic methodology to estimate agricultural water supply for rice paddy fields from reservoirs, pumping stations, intake structures, and tube wells on river basin scale. Agricultural water supply from irrigation reservoirs are estimated using the daily or ten day's storage rate data and DIROMmaily Inigation Reservoir Operation Model) model. Estimation of daily water supply from pumping station are carried out from the annual water use with typical water supply patterns. The daily groundwater withdrawn are investigated from the gross water requirement for rice and the design capacity of tube well. And, the daily intake discharge are estimated the minimum amount from the gross water requirement, stream discharge, and the design capacity. During 1993 to 1997, the annual water supply for irrigation in the Han river basin ranged from 569 to 709 million $\textrm{m}^3/yr$, and the mean was estimated to be 640 million $\textrm{m}^3/yr$.

  • PDF

Minimization of Pump Running Cost in the Large-scale Water Supply System (광역상수도 계통의 Pump 운전비용 최소화)

  • Lee, Gwang-Man;Kang, Shin-Uk;Kim, Soo-Myung
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.759-771
    • /
    • 2009
  • The electricity cost of pumping system accounts for a large part of the total operating cost for long distance water supply networks. This study presents a method based on dynamic programming for establishing an joint optimal operation of pumps and storages system on a hourly basis. Analysis is taken of the relative efficiencies of the available pumps, the structure of the electricity tariff, the consumer-demand pattern, and the storage characteristics and operational constraints of the pipe. The possible system objectives and constraints are described. An application of the method to the existing Yangju Water Supply System consisted of two pump station and 5 storage pools under the condition of expanding pumping facility in the part of the Capital Area Water Supply System is presented, showing that considerable electricity cost savings are remarkable. The approach was found to be implementable in real system operation and large-scale water supply system design in respect of minimizing life-cycle total cost.