• Title/Summary/Keyword: Pump performances

Search Result 145, Processing Time 0.025 seconds

Valveless piezoelectric micro-pump exploiting two sided disk type vibrator (디스크형 진동자의 연동 운동을 이용하는 밸브리스 마이크로 압전 펌프)

  • Oh, Jin-Heon;Lim, Jong-Nam;Jeong, Eui-Hwan;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.159-159
    • /
    • 2009
  • Existence of physical moving parts (ex. check valve) produces several problems (mechanical abrasion, deterioration of reliability, limited temperature performances etc.) in driving pumps. To overcome such problems, we proposed a valveless piezoelectric micro-pump which has new type volume transferring mechanism. The proposed micro-pump has a double faced disk type vibrator that can generate peristaltic motion formed by traveling wave in each surface of a disk. This type of micro-pump is able to apply to a fluid supply system that provides two different kinds of fluid simultaneously. In this paper, we propose a simple and novel design of piezoelectric micro-pump that is peristaltically by piezoelectric actuators and allows the removal of the need for valves of other physically moving parts. The finite elements analysis on the proposed pump model was carried out to verify its operation principle using the commercial analysis software.

  • PDF

Analytical Study on the Performance of Ground Source Compound Hybrid Heat Pump System for Large Community Building (대형 Community 건물의 지열원 복합 하이브리드 히트펌프 시스템 성능에 관한 해석적 연구)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Lee, Jong-Gil;Hong, Seong-Ho;Choi, Young-Don;Cho, Sung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.634-637
    • /
    • 2008
  • Ground source heat pumps are clean, energy-efficient and environment-friendly systems cooling and heating. Although the initial cost of ground source heat pump system is higher than that of air source heat pump, it is now widely accepted as an economical system since the installation cost can be returned within an short period of time due to its high efficiency. In the present study, performances of ground source compound hybrid heat pump system applied to a large community building are simulated. The system design and operation process appropriate for the surrounding circumstance guarantee the high benefit of the heat pump system applied to a large community building. If among several renewable energy sources, ground, river, sea, waste water source are chosen as available alternative energies are combined, COP of the system can be increased largely and hybrid heat pump system can reduced the fuel cost.

  • PDF

Design of pulsatile pump and performance test for pulsatile flow generation (맥동 유동 발생을 위한 맥동 펌프의 설계 및 특성 분석 연구)

  • Joo, Yoon-Ha;Kim, Kyung-Won;Lee, Yeon-Ho;Kwak, Moon-Kyu;Lee, Choon-Young;Lee, Jong-Min;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.149-155
    • /
    • 2013
  • For in-depth research of blood flow, it is important to create pulsating flow like the blood flow from heart beat. In this study, we developed a heart mimicking pulsatile pump and evaluated its performances. Main body of pump was produced using a piston pump, and its rpm and duty ratio was modulated by DC motor and encoder. To determine the part dimensions, principle stress theory and simple fluidic pressure analysis were used. The performance of pulsating pump was evaluated by comparing the pressure values and their deviations according to experimental variables. For the results, the output value of pressure followed the distribution of pulsating flow and its deviation was negligible. Through this study, we expect the established pulsating pump can be widely used in study of blood flow produce easy ways to related researchers.

Experimental Study on the Heating Performance Improvement of R134a Heat Pump System for Zero Emission Vehicles (무공해자동차용 R134a 히트펌프 시스템의 난방성능 향상에 관한 실험적 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.257-262
    • /
    • 2014
  • This paper describes an experimental study for heating performance that can be used in R-134a automobile heat pump systems. The heat pump system is widely studied for heating system in zero-emission vehicles to attain both the small power consumption and the effective heating of the cabin. This paper presents the experimental results of the influence on heating capacity and coefficient of performance of heat pump system. Tests were performed with different sizes of internal and external heat exchangers, and refrigerant flow rate was also considered in two-way flow devices. In addition, the heat, air, and water sources with the heat pump system were examined. The experimental results with the heat pump system were used to analyze the impact on performances. The best combination of performance was A-inside heat exchanger, B-outside heat exchanger, and B-flow device, respectively. In addition, a water heat-source was found to give roughly 40% of better performance than an air heat-source heat pump system.

Meanline Performance Analysis of a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 평균유선 성능해석)

  • Yoon, Eui-Soo;Choi, Bun-Seog;Park, Moo-Ryong;Rhi, Seok-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.33-41
    • /
    • 2002
  • Low NPSH and high pressure pumps we widely used for turbopump systems, which have an inducer and operate at high rotating speeds. In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions at design or off-design points. The method was applied for the performance prediction of a fuel pump. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

Design of a Charge Pump Circuit Using Level Shifter for LED Driver IC (LED 구동 IC를 위한 레벨 시프터 방식의 전하펌프 회로 설계)

  • Park, Won-Kyeong;Park, Yong-Su;Song, Han-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.13-17
    • /
    • 2013
  • In this paper, we designed a charge pump circuit using level shifter for LED driver IC. The designed circuit makes the 15 V output voltage from the 5 V input in condition of 50 kHz switching frequency. The prototype chip which include the proposed charge pump circuit and its several internal sub-blocks such as oscillator, level shifter was fabricated using a 0.35 um 20 V BCD process technology. The size of the fabricated prototype chip is 2,350 um ${\times}$ 2,350 um. We examined performances of the fabricated chip and compared its measured results with SPICE simulation data.

Simulation of the Second Kind LiBr - H2O Absorption Heat Pump (2종 LiBr - H2O 흡수식 열펌프의 시뮬레이션)

  • Huh, J.Y.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.146-161
    • /
    • 1989
  • The second kind LiBr-$H_2O$ absorption heat pump system was simulated and the performances of it were predicted. The elements of heat pump system, evaporator, absorber and generator were analysed by solving the energy balance equations and concentration equations which describe the reactions between working fluids. The results show that the temperature gain of absorber is affected considerably by the operating conditions of heat pump system, on the other hand, COP is little affected by them.

  • PDF

Simulation Program Verification and Performance Prediction of the Multi-type Heat Pump System

  • Han, Do-Young;Park, Kwan-Jun;Lee, Han-Hong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.47-54
    • /
    • 2001
  • The simulation program which can predict major performances of the multi-type heat pump system was developed. In order to verify the simulation program, several experimental tests were performed under various recommended conditions. The experimental results show in good agreement with simulation results. The verified simulation program was used to analyze the system performance. The capacities and the COP's under the various indoor and outdoor conditions were predicted. Therefore, it may be concluded that the system simulation program developed in this study may be effectively used for the system design and the performance prediction of the multi-type heat pump system.

  • PDF

Design Optimization on 2 Vane Pump of Wastewater Treatment for Efficiency Improvement (효율향상을 위한 폐수처리용 2 Vane 펌프 설계 최적화)

  • KIM, SUNG;MA, SANG-BUM;KIM, JIN-HYUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.277-284
    • /
    • 2021
  • This paper deals with multi-objective optimization using response surface method to improve the hydraulic performances of a 2 vane pump for wastewater treatment. For analyzing the internal flow field in the pump, steady Reynolds-averaged Navier-Stokes equations were solved with the shear stress transport turbulence model as a turbulence closure model. The impeller and volute variables were defined in the shape of the 2 vane pump. The objective functions were set to satisfy the total head at the design flow rate as well as to improve the efficiency. The hydraulic performance of the optimally designed shape was verified by numerical analysis results.

Effects of axial distance between inducer and impeller on the performance of the turbopump (인듀서와 임펠러 축방향 간극이 터보펌프 성능에 미치는 영향)

  • Choi, Chang-Ho;Kim, Dae-Jin;Hong, Soon-Sam;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • An inducer is employed in a modern rocket feed system because it allows a turbopump system to operate at a high speed with low inlet pressures so as to minimize the weight and the size of the system. Cavitation performance can be improved by installing an inducer to the pump, enabling to increase the operational speed of the pump. The main purpose of an inducer is to increase the static pressure prior to an impeller to enable the impeller to operate satisfactorily under cavitation environments. In the present study the effects of axial distance between the inducer and the impeller on the performance of the pump were studied using both experimental and computational methods. Two inducers with different axial length were used for the experiments and the pump performances were measured. The experimental results show that the suction performance decreases as the axial gap between the inducer and impeller is increased.