• Title/Summary/Keyword: Pump inducer

Search Result 59, Processing Time 0.024 seconds

A Flow Analysis of a Solution Pump for an Absorption Chiller (흡수식 냉동기용 용액펌프의 유동특성 해석)

  • Bae Wonyoung;Lee Kichoon;Hur Nahmkeon;Jeong Siyoung
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.569-572
    • /
    • 2002
  • In the present study, flow simulations of a solution pump fer an absorption chiller are performed. The results are compared to the experimental data. Since the cavitation is more likely to occur in a solution pump due to Its operation under vacuum condition, and the cavitation was not considered in the present computations, the computed and experimental results show large discrepancies. For more accurate performance prediction of a solution pump, a cavitation model is required in the flow simulation. Flows through an inducer are also studied to see the effect of design parameters on performance characteristics. It is shown from the results that, if not properly designed, recirculation legion may exist near the hub region of the Inducer, and the suction surface may experience higher pressure than the pressure surface of the inducer, which may deteriorate the performance.

  • PDF

Design of Cavitation-Resistive Pump Inducer (공동현상을 고려한 펌프 인듀서 설계)

  • Jung, Keun-Hwa;Ahn, Kwang-Woon;Lee, Seungbae;Kim, Jin-Hwa;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.185-190
    • /
    • 2001
  • The cavitation causes suction performance and efficiency of the high-speed pump to be reduced significantly To diminish these effects, the inducer has been used. Most of the inducer is designed at a maximum efficiency point of the pump, therefore suction performance drop due to effects of flow separation and inlet inverse flow is often observed at off-design point. The objective of this study is to find out the cavitation modes at various conditions by applying event detection technique and to design an inducer reducing cavitation. The pressure fluctuations at each cavitating condition were measured at inducer inlet and outlet locations using pressure transducers, which were located 90 degrees apart from each other to identify the cavitation modes. The time-frequency characteristics were analyzed by using Choi-williams distribution. In the second part of this paper, the inducer design method which uses nominal performance characteristic and onset condition of cavitation is introduced and applied to real situation.

  • PDF

Development of Turbopump Cavitation Performance Test Facility and the Test of Inducer Performance (터보펌프 Cavitation 성능시험기 개발 및 성능시험에 관한 연구)

  • Sohn, Dong-Kee;Kim, Chun-Tak;Yoon, Min-Soo;Cha, Bong-Jun;Kim, Jin-Han;Yang, Soo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.619-624
    • /
    • 2001
  • A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar; rotational speed 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification.

  • PDF

Characteristics of Cavitating Flow in Turbopump Inducer/Impeller (인듀서와 임펠러가 결합된 터보펌프에서의 캐비테이션 유동 특성)

  • Kim, Changhyun;Choi, Chang-Ho;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.21-28
    • /
    • 2014
  • Propellent should be pressurized inside the turbopump to gain high thrust in a projectile. Turbopump is composed of an inducer, which prevents impeller performance deterioration, and an impeller. Several types of cavitation occur inside the inducer, numerous experiments and CFD simulations are conducted. Though, an inducer takes only small portion of total head of the pump and the following impeller determines whole turbopump performance. In addition, low inlet pressure makes the flow to be cavitated not only at the inducer, but also at the impeller in real cases. Therefore, flow through an inducer and an impeller should considered simultaneously. In this study, LOX pump composed of an inducer and an impeller is analyzed by using commercial CFD code ANSYS CFX 13.0. Non-cavitating flow with high inlet pressure and cavitating flow with low inlet pressure are both simulated and head, suction performances are shown. Evolution of the flow and the cavitation by reducing cavitation number and effect of cavitation on pump performance are studied.

Meanline Performance Analysis of a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 평균유선 성능해석)

  • Yoon, Eui-Soo;Choi, Bun-Seog;Park, Moo-Ryong;Rhi, Seok-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.33-41
    • /
    • 2002
  • Low NPSH and high pressure pumps we widely used for turbopump systems, which have an inducer and operate at high rotating speeds. In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions at design or off-design points. The method was applied for the performance prediction of a fuel pump. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

An Interal Flow Analysis of Turbo Pump Inducer (터보펌프 인듀서의 내부 유동 해석)

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.631-636
    • /
    • 2001
  • The internal flow in the rocket pump inducer of LE-7 engine for H-II rocket was predicted at design and off-design flow rates using CFD code, CFX- Tascflow. In this numerical study, the performance curve of inducer coressponding to flow rates variation and the internal flow in the front of blade leading edge show good agreement between the calculations and the measurements. Backflow is appeared at suction side of leadinge edge tip, and this region is extended to upstream as flowrate decrease. Because of backflow, pressure loss coressponding to meridinal coordinate occupy 50% from inlet domain to leading edge. By this phenomena, pressure loss in front of blade leading edge take a great effect to inducer performance.

  • PDF

Experimental Study on Cavitation Instability of a Solution Pump Inducer in an Absorption Chiller-Heater (흡수식 냉온수기내 용액펌프 Inducer의 Cavitation 불안정성에 대한 실험적 연구)

  • Seo, Min;Lee, Kyung-Hoon;Kang, Shin-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2434-2439
    • /
    • 2008
  • This paper was studied on the cavitation instability of a Solution Pump Inducer in an absorption chiller-heater. Inlet pressure of LiBr and rotational speed at nominal mode are 2,800 Pa and 3,500 rpm respectively. Due to the marginal operation of available NPSH, the cavitation performance of the inducer is critical for the stable operation without the deterioration of head performance. In the study, cavitation performance and its mode of instability was investigated experimentally. Water was used as the working fluid and the test inducer was scaled up as 1.75 times for detail measurements and flow visualization. Inlet pressure was controlled by a vacuum pump. This research focused on types of cavitation instability and phenomena to investigate the possibility of harmful damage due to cavitation instability. Casing wall pressure and instantaneous inlet pressure was measured to observe the unsteady flow characteristics. Through the visualization and spectrum analysis of pressure, the occurrence region and intensity of asymmetric cavitation and cavitation surge are analyzed in the test inducer.

  • PDF

Meanline Performance Analysis of a Fuel Pump for a Turbopump System (터보펌프용 연료펌프의 평균유선 성능해석)

  • Yoon, Eui-Soo;Choi, Bum-Seog;Park, Moo-Ryong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.250-257
    • /
    • 2001
  • Low NPSH and high pressure pumps are widely used for turbopump systems, which have an inducer and operate at high rotating speeds In this paper, a meanline method has been established for the preliminary design and performance prediction of pumps having an inducer for cavitating or non-cavitating conditions and at design or off-design points. The method was applied for the performance prediction of a fuel pump, which had been developed by Hyundai Mobis in collaboration with KeRC for a liquid rocket engine. The engine uses liquid methane and liquid oxygen as working fluids and rotates at 50,000 rpm KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed (10,000 ${\~}$ 15,000 rpm). Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute.

  • PDF

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.2 s.29
    • /
    • pp.31-38
    • /
    • 2005
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC(Kelyish Research Center) carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pump was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI(Korea Aerospace Research Institute). The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

Hydraulic Design and Performance Evaluation of a Fuel Pump for a High Pressure Turbopump System (고압 터보펌프용 연료펌프의 수력설계 및 성능 평가)

  • Choi, Bum-Seog;Yoon, Eui-Soo;Oh, Hyoung-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.341-346
    • /
    • 2004
  • A low NPSH and high pressure fuel pump has been designed for a turbopump system. The fuel pump has an axial inducer and a centrifugal impeller. A meanline method has been established for the preliminary design and performance prediction of pumps at design or off-design points. KeRC carried out a model testing of the fuel pump with water as a working fluid at the reduced speed. Predicted performances by the method are shown to be in good agreement with experimental results for cavitating and non-cavitating conditions. The established meanline method can be used for the performance prediction and preliminary design of high speed pumps which have a inducer, impeller and volute. In the current study, the three dimensional viscous flow in the fuel pump was investigated through numerical computation. A modified design of the fuel pun was generated to improve pump performance by utilizing CFD results. The modified fuel pump was experimentally tested by ROTEM and KARI. The measured non-cavitating and cavitating performance showed a good agreement with designed performance.

  • PDF