• Title/Summary/Keyword: Pump impeller

Search Result 341, Processing Time 0.022 seconds

A Study of NPSH Required Performance Improvement for a Industrial Vertical Pump (산업용 수직펌프의 흡입성능 향상 연구)

  • Chung, Kyung-Nam;Park, Jong-Hwoo;Kim, Yong-Kyun;Kim, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.909-915
    • /
    • 2009
  • In this paper, a study of performance improvement for a centrifugal vertical pump having specific speed of 330 is introduced. The existing model has high efficiency but needs better NPSH required performance. Such that new pump model is designed to obtain larger suction specific speed. 6 design parameters considered to affect pump performance are selected for impeller design. Key design parameters are investigated using by design of experiments and CFD, and impeller inlet diameter is increased to get better suction performance. The amount of inlet diameter increase is determined by using cavitation analysis. The results show that new design model has higher efficiency and better NPSH required performance than the existing model.

Study on the Control of the Axial Thrust of a Pump for Liquid Rocket Engine Turbopumps (액체로켓엔진 터보펌프용 펌프의 축추력 조절에 관한 연구)

  • Choi, Chang-Ho;Noh, Jun-Gu;Kim, Dae-Jin;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • The magnitude of the axial thrust acting on pump bearings has a great influence on the operational reliability and service life of a pump for turbopumps. In the present study, radial vanes are introduced to the pump casing to control the axial thrust by changing the cavity pressure between the impeller and the casing. To investigate the effect of the vanes on the axial thrust of the pump, experimental and computational studies were performed with and without the vanes. It is shown that the vanes reduce the cavity pressure by preventing the flow from rotating with the impeller. Experimental and computational results show similar trend for the axial thrust difference between two cases with and without the vanes. The results show that the cavity vanes are very effective in controlling the magnitude of the axial thrust.

Spiral Casing of a Volute Centrifugal Pump - Effects of the Cross Sectional Shape - (볼류트 원심펌프의 스파이럴 케이싱 - 단면 형상의 영향 -)

  • Jin, Hyun Bae;Kim, Myung Jin;Son, Chang Ho;Chung, Wui Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.28-34
    • /
    • 2013
  • Centrifugal pump consists of a axis, a impeller and a spiral casing. The impeller is the most important component in centrifugal pump. But to minimize flow loss in discharge passage including spiral casing, the shape of spiral casing is very important also. So, to investigate the effect of shape of the spiral casing on performance curve of pump, the characteristics of spiral casing were studied through numerical analysis for centrifugal pump used on industry field. From the results the rectangular model was showed more loss than the others because of asymmetric flow field.

Effect of the Impeller-Blade Radius of Curvature on the Performance of Centrifugal Pump (임펠러 곡율반경(曲率半徑)이 농용양수기(農用揚水機)의 성능(性能)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Choi, K.H.;Kwon, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.2
    • /
    • pp.18-27
    • /
    • 1988
  • The basic model of impeller was developed for the theoretical analysis of performance. The developed model was tested with two different blade radius of curvature based on the pumping efficiency under the operating conditions in Korea. And the pump performance of the impeller was also tested for the various speeds. The results obtained are summarized as follows; 1. There was no significant effect on the different blade radius of curvatures on the discharge and pump efficiency. 2. Head and power requirement was increased in proportion to the blade radius of curvature. 3. In the mathematical approach of the blade radius of curvature, the method of involute curve was more recommendable as compared with the method of circular arc curve. 4. The pump efficiency of the model impeller developed based on the theoretical analysis increased about 10% more than that of the existing impeller.

  • PDF

Computational Study of Magnetically Suspended Centrifugal Blood Pump (The First Report: Main Flow and Gap Flow)

  • Ogami, Yoshifumi;Matsuoka, Daisuke;Horie, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.102-112
    • /
    • 2010
  • Artificial heart pumps have attracted the attention of researchers around the world as an alternative to the organ used in cardiac transplantation. Conventional centrifugal pumps are no longer considered suitable for long-term application because of the possibility of occurrence of blood leakage and thrombus formation around the shaft seal. To overcome this problem posed by the shaft seal in conventional centrifugal pumps, the magnetically suspended centrifugal pump has been developed; this is a sealless rotor pump, which can provide contact-free rotation of the impeller without leading to material wear. In Europe, clinical trials of this pump have been successfully performed, and these pumps are commercially available. One of the aims of our study is to numerically examine the internal flow and the effect of leakage flow through the gap between the impeller and the pump casing on the performance of the pump. The results show that the pressure head increases compared with the pump without a gap for all flow rates because of the leakage of the fluid through the gap. It was observed that the leakage flow rate in the pump is sufficiently large; further, no stagnant fluid or dead flow regions were observed in the pump. Therefore, the present pump can efficiently enhance the washout effect.

Experimental Evaluation and Performance Analysis for a Mini Turbo-pump (소형 터보펌프에 대한 실험적 평가와 성능해석)

  • Kim, Soo-Won;Park, Moo-Ryong;Hwang, Soon-Chan;Oh, Hyoung-Woo;Yoon, Eui-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.54-60
    • /
    • 2002
  • A mini turbo-pump having 44mm diameter impeller for hydraulic power control have been tested to evaluate hydraulic performance and losses. The characteristics of the losses such as mechanical, friction, balancing rib losses were investigated. The investigation revealed that the friction loss is relatively large but the balancing rib loss small. It was found that the hydraulic efficiency of the pump at design point is very low($27\%$) due to low specific speed and large friction losses. A computational fluid dynamics(CFD) method also has been utilized for performance prediction of the mini turbo-pump to compare the computed results with the test data.

  • PDF

Numerical Flow Analysis of Propeller Type Pump (프로펠러식 펌프의 전산 유동 해석)

  • Yu, Hye-Ran;Park, Warn-Gyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.6 s.39
    • /
    • pp.29-34
    • /
    • 2006
  • Propeller type pump has been widely used for pumping water in agricultural and manufacturing industry. Since a propeller type pump contains a screw impeller inside a circular casing, the numerical analysis becomes complex. However, the accurate prediction of viscous flow is essential for computing hydrodynamic performances. To analysis the flow and the performance of the propeller type pump, the present work has solved 3D incompressible RANS equations on the multiblocked grid. From the present calculation, small amount of flow separation was shown near hub and the flow was recovered to nearly uniform inflow after one diameter downstream. Torque and thrust coefficient were computed and compared with experiments.

Impeller Failure and Pressure Pulsation of Boiler Main Feed Water Pump for Power Plant (발전소 주 급수 펌프의 임펠러 손상과 압력맥동 현상)

  • Kim, Yeon-Whan;Kim, Kye-Youn;Lee, Woo-Kwang;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.368-373
    • /
    • 2001
  • A major concern on high-energy centrifugal pump is the potential for interaction of two-phase flow phenomena with mechanical response of the pumping elements. The other concern is the pressure pulsations created from trailing edge of the impeller blade and flow separation and recirculation at partial load in centrifugal pumps. These interactions generating between rotor and casing cause dynamic pulsation on pump and exciting pipeline vibration. The higher severity responses, the more lead to failure of pump and system components. Finally, it cause severe axial vibration of single stage pump due to the hydraulic instability in flow condition below BEP.

  • PDF

Hydrodynamic Characteristics of Vaned-Diffuser and Return-Channel for a Multistage Centrifugal Pump (원심다단펌프용 디퓨저-리턴채널의 유동특성)

  • Oh, Hyoung-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.54-60
    • /
    • 2011
  • This paper presents the steady-state performance analysis of the first stage of a multistage centrifugal pump, composed of a shrouded-impeller, a vaned-diffuser and a return-channel, using the commercially available computational fluid dynamics (CFD) code, ANSYS CFX. The detailed flow fields in the vaned-diffuser with outlet in its side wall and the return-channel are investigated by the CFD code adopted in the present study. The effect of the vaned-diffuser with a downstream crossover bend and the corresponding return-channel on the overall hydrodynamic performance of the first stage pump has also been demonstrated over the normal operating conditions. The predicted hydrodynamics for the diffusing components herein could provide useful information to match the inlet blade angle of the next stage impeller for improving the multistage pump performances.

Performance Analysis of a Mixed-Flow Pump for Waterjet Propulsion

  • Ahn Jong-Woo;Kim Ki-Sup;Park Young-Ha;Kim Kyung-Youl;Oh Hyoung-Woo
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.2
    • /
    • pp.11-20
    • /
    • 2005
  • A mixed-flow pump is largely applied for waterjet propulsion in high-speed vessels because of excellent cavitation performance. For the present study, we analyze the performance of mixed-flow pump, which is composed of impeller and stator. The test device for a mixed-flow pump was installed in the test section in the KRISO cavitation tunnel. The performance tests of two mixed-flow pumps were carried out with the test device at various flow rates using various nozzles. The test results agree fairly well with the predicted results by commercial CFD code. The test device is available for verification of impeller performance together with CFD analysis