• Title/Summary/Keyword: Pump Module

Search Result 94, Processing Time 0.031 seconds

A Haptic Mouse for an Immersive Interface (몰입형 인터페이스를 위한 햅틱 마우스)

  • Kim, Da-Hye;Cho, Seong-Man;Kim, Sang-Youn
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1210-1220
    • /
    • 2011
  • In this paper, we suggest a haptic mouse system as an immersive interface between virtual environment and a human operator. The proposed haptic mouse creates vibrotacitle and thermal sensation to increase the immersion. The vibrotactile module is composed of eccentric motors and a solenoid actuator, and the thermal module consists of a thin-film resistance temperature detector and a Peltier thermoelectric heat pump. In order to evaluate the proposed haptic mouse system, we develop a simple racing game and conduct an experiment. The result of the experiment shows that the proposed haptic mouse system can improve the sense of reality in virtual environment and can be used as an effective interface between virtual environment and a human operator.

Design and estimation of a sensing attitude algorithm for AUV self-rescue system

  • Yang, Yi-Ting;Shen, Sheng-Chih
    • Ocean Systems Engineering
    • /
    • v.7 no.2
    • /
    • pp.157-177
    • /
    • 2017
  • This research is based on the concept of safety airbag to design a self-rescue system for the autonomous underwater vehicle (AUV) using micro inertial sensing module. To reduce the possibility of losing the underwater vehicle and the difficulty of searching and rescuing, when the AUV self-rescue system (ASRS) detects that the AUV is crashing or encountering a serious collision, it can pump carbon dioxide into the airbag immediately to make the vehicle surface. ASRS consists of 10-DOF sensing module, sensing attitude algorithm and air-pumping mechanism. The attitude sensing modules are a nine-axis micro-inertial sensor and a barometer. The sensing attitude algorithm is designed to estimate failure attitude of AUV properly using sensor calibration and extended Kalman filter (SCEKF), feature extraction and backpropagation network (BPN) classify. SCEKF is proposed to be used subsequently to calibrate and fuse the data from the micro-inertial sensors. Feature extraction and BPN training algorithms for classification are used to determine the activity malfunction of AUV. When the accident of AUV occurred, the ASRS will immediately be initiated; the airbag is soon filled, and the AUV will surface due to the buoyancy. In the future, ASRS will be developed successfully to solve the problems such as the high losing rate and the high difficulty of the rescuing mission of AUV.

Cooling characteristics of the multichip module using paraffin slurry (파라핀 슬러리를 사용한 다칩모듈의 냉각특성)

  • Jo, Geum-Nam;Choe, Min-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.888-898
    • /
    • 1998
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water and paraffin slurry. The experimental parameters are mass fraction of 2.5 ~ 7.5% for paraffin slurry, heat flux of 10 ~ 40 W/cm$^{2}$ for the simulated VLSI chips and Reynolds numbers of 5,300 ~ 15,900. The apparatus consisted of test section, paraffin slurry maker, pump, constant temperature baths, flowmeter, etc. The test section made of in-line, four-row array of 12 heat sources for simulating 4 * 3 multichip module which was flush mounted on the top wall of a horizontal rectangular channel with the aspect ratio of 0.2. The inlet temperature was 20 deg. C for all experiments. The size of paraffin slurry was constant as 10 ~ 40 .mu.m befor and after the experiment. The chip surface temperatures for paraffin slurry with the mass fraction of 7.5% showed lower by 16 deg. C than those for water when the heat flux is 40 W/cm$^{2}$. The local heat transfer coefficients for the paraffin slurry with the mass fraction of 7.5% were larger by 17 ~ 25% than those for water at the first and the fourth row. The local heat transfer coefficients reached to a row-number-independent, thermally fully developed value approximately after the third row. The local Nusselt numbers at the fourth row for paraffin slurry with the mass fraction of 7.5% were larger by 23 ~ 29% than those for water.

A New Photovoltaic System Architecture of Module-Integrated Converter with a Single-sourced Asymmetric Multilevel Inverter Using a Cost-effective Single-ended Pre-regulator

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.222-231
    • /
    • 2017
  • In this paper, a new architecture for a cost-effective power conditioning systems (PCS) using a single-sourced asymmetric cascaded H-bridge multilevel inverter (MLI) for photovoltaic (PV) applications is proposed. The asymmetric MLI topology has a reduced number of parts compared to the symmetrical type for the same number of voltage level. However, the modulation index threshold related to the drop in the number of levels of the inverter output is higher than that of the symmetrical MLI. This problem results in a modulation index limitation which is relatively higher than that of the symmetrical MLI. Hence, an extra voltage pre-regulator becomes a necessary component in the PCS under a wide operating bias variation. In addition to pre-stage voltage regulation for the constant MLI dc-links, another auxiliary pre-regulator should provide isolation and voltage balance among the multiple H-bridge cells in the asymmetrical MLI as well as the symmetrical ones. The proposed PCS uses a single-ended DC-DC converter topology with a coupled inductor and charge-pump circuit to satisfy all of the aforementioned requirements. Since the proposed integrated-type voltage pre-regulator circuit uses only a single MOSFET switch and a single magnetic component, the size and cost of the PCS is an optimal trade-off. In addition, the voltage balance between the separate H-bridge cells is automatically maintained by the number of turns in the coupled inductor transformer regardless of the duty cycle, which eliminates the need for an extra voltage regulator for the auxiliary H-bridge in MLIs. The voltage balance is also maintained under the discontinuous conduction mode (DCM). Thus, the PCS is also operational during light load conditions. The proposed architecture can apply the module-integrated converter (MIC) concept to perform distributed MPPT. The proposed architecture is analyzed and verified for a 7-level asymmetric MLI, using simulation results and a hardware implementation.

침지형 분리막을 사용한 오수처리

  • 최광호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.113-133
    • /
    • 1998
  • In activated sludge process, sludge settling condition is affected by organic loading rate or operation condition, and if settling condition is getting worse, it is common that overall process fails due to wash-out of biomass causing low concentration in the aeration tank. Also activated sludge process has such several problems as requiring large area, consuming a lot of power and producing large volume of sludge. Increased public concern over health and the environment combined with a strong desire to reduce capital, operating and maintenance costs, have created a need for innovative technologies for building new high quality effluents which vail meet 21st century crkeria. MBR(Membrane Bioreactor) process consists of a biological reactor and ultrafiltration(UF) membrane system that replaces the conventional clarifier of an activated sludge process. The main operating advantages of this system are that the quality of the effluent is independent of the settleability of the mixed liquor and that the effluent is free of suspended solids in any operating condition. It is possible to eliminate clarifier and to reduce the volume of aeration tank because it can afford to accumulate high biomass concentration in the bioreactor(20, 000~30, 000mg/L), which would not be possible in a conventional activated sludge process. Therefore, this process reduces overall treatment plant area. In addition to those advantages, Longer SRT condition enables higher sludge digestion in MBR process so the sludge volume produced is 50 to 70% lower than that of conventional activated sludge process There are two kinds of MBR process according to the allocations of membrane. One is cross flow type MBR of which module is located outside of the bioreactor and mixed liquor is driven into the membrane module. The other is submerged type MBR process of which module is submerged in the bioreactor and mixed liquor is generally sucked from the lumen side. addition to that the cake layer is often removed by the uplifting flow of bubbling air. A submerged MBR process is superior to a crossflow MBR in regard to the power consumption because suction pressure of a submerged MBR is generally lower than that of a crossflow MBR which has recirculation pump. A submerged MBR, therefore, has the potential to be applied to small wastewater treatment plants that need low cost treatment systems.

  • PDF

Calculation of Required Coolant Flow Rate for Photovoltaic-thermal Module Using Standard Meteorological Data and Thermal Analysis (표준기상 데이터와 열해석을 이용한 태양광열 모듈의 필요 냉각수량 산출)

  • Lee, Cheonkyu;Jeong, Hyo Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.18-22
    • /
    • 2022
  • Photovoltaics (PV) power generation efficiency is affected by meteorological factors such as temperature and wind speed. In general, it is known that the power generation amount decreases because photovoltaics panel temperature rises and the power generation efficiency decreases in summer. Photovoltaics Thermal (PVT) power generation has the ad-vantage of being able to produce heat together with power, as well as preventing the reduction in power generation efficien-cy and output due to the temperature rise of the panel. In this study, the amount of heat collected by season and time was calculated for photovoltaics thermal modules using the International Weather for Energy Calculations (IWEC) data provided by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). Based on this, we propose a method of predicting the temperature of the photovoltaics panel using thermal analysis and then calculating the flow rate of coolant to improve power generation efficiency. As the results, the photovoltaics efficiencies versus time on January, April, July, and October in Jeju of the Republic of Korea were calculated to the range of 15.06% to 17.83%, and the maxi-mum cooling load and flow rate for the photovoltaics thermal module were calculated to 121.16 W and 45 cc/min, respec-tively. Though this study, it could be concluded that the photovoltaics thermal system can be composed of up to 53 modules with targeting the Jeju, since the maximum capacity of the coolant circulation pump of the photovoltaics thermal system applied in this study is 2,400 cc/min.

Development of Electronically Controlled CVT for Hybrid Passenger Car (하이브리드 승용차용 전자식 무단변속기의 개발)

  • 최득환
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.75-81
    • /
    • 1999
  • In this paper, the details of electronically controlled CVT is described , which Kia Motor company recently developed in prototype form for hybrid passenger car. This transmission has two input shafts, one for engine and the other for traction motor. The shaft for traction motor is located at rear side which is extended from primary pulley shaft and connected to traction motor through adapter gear box. Adopting two input system, various driving mode is available such as motor alone driving in hybrid vehicle application. As far as electrohydraulic system concerned , this transmission uses two bleed type variable force solenoids for line pressure and ratio control, and one on-off solenoid for clutch control. Another feature for this transmission is that oil pump for transmission is separate from CVT for supplying oil pressure even at vehicle standstill.

  • PDF

MPPT Control of PV Water Pump Using BLDC-Inverter (BLDC용 인버터를 이용한 PV 양수펌프의 MPPT 제어)

  • Baek, S.K.;Jho, J.M.;Lee, S.H.;Kim, S.N.;Oh, B.H.;Lee, H.G.;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.971-973
    • /
    • 2001
  • This paper shows how to design a Global control, using Field Orientation, avoiding to use the DC/DC converter, and finding the relationships among the DC magnitudes and AC ones. And This paper deals with water pumping system which economic and durable storage systems for sustained production of power and propose MPPT methods using $i_{qs}$ of BLDC motor without battery module and chopper circuit.

  • PDF

Development of Multi-Chemical Supply System for Semiconductor Wafer Cleaning Station

  • Chung, Myung-Jin;Song, Young-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1309-1312
    • /
    • 2005
  • A multi-chemical supply system is developed and applied to a wet station, which uses the multi-chemical process in one bath. To control the concentration of two chemicals, control logic of a supply pump is programmed using the programable logic controller (PLC). By using the multi-chemical supply system, wet station with single bath is applied to cleaning process using multi chemicals such as buffed oxide etchant (BOE) and standard clean 1 (SC-1). The concentration of each chemical is measured in the bath to verify the multi-chemical supply system. The control range in the each chemical concentration is measured to 1.33weight% in NH4OH and 0.23weight% in H2O2. The multi-chemical supply system can be movable and usable as an independent module of fixed wet station. By simply midifying the PLC, a multi-chemical supply system can be developed for a wet station.

  • PDF

Development of Micro Press for Forming the Micro Thin Foil Valve (마이크로 박판 밸브 성형을 위한 마이크로 프레스 개발)

  • Lee, Hye-Jin;Lee, Nak-Kyu;Lee, Hyoung-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.166-171
    • /
    • 2007
  • In this paper Research development about a micro metal forming manufacturing system has been developed. A micro forming system has been achieved in Japan and it's developed micro press is limited to single forming process. To coincide with the purpose to be more practical, research and development is necessary about the press which the multi forming process is possible. We set the development of the equipment including micro deep drawing, micro punching and micro restriking process to the goal. To achieve this goal, we set the application product to a micro thin foil valve which is used in the micro pump module. The compound die set has been designed and manufactured to make two step process. The material of thin foil valve is SUS-304 and its thickness is 50$\mu$m. We can get a good forming results from micro punching experiments in this paper.