• Title/Summary/Keyword: Pulverized solid particles

Search Result 13, Processing Time 0.025 seconds

A Flow Field Analysis of Compound Jets Modified at a 10 Degree Upward Angle ($10^{\circ}$상향분사된 혼합분류의 유동장 해석)

  • 박상규;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.103-110
    • /
    • 2000
  • A two phase compound jet, which mixes pulverized solid particles with the air in the test section, is experimentally analyzed in this study. Two phase flow is jetted 10 degree upward in the primary jet, while the secondary jet utilizes the air only. The height difference between the primary and secondary central axises is 32.5mm. The velocity vector field, concentration field, and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. When the jet angle of the secondary jet goes into effect, the solid particle recirculation zone becomes larger. Also, solid particle concentration becomes more dense due to a velocity decrement of particles.

  • PDF

Study on Two-Phase Flow generated by Two Jets with Height Difference (높이차가 존재하는 두 분류의 2상유동에 관한 연구)

  • 박상규;양희천;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.88-93
    • /
    • 2000
  • In this study, the mixing process of two-phase flow generated by two jets with height difference is analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid particles with air. The height difference between the main jet and the secondary jet is changed into three kinds(0, 32.5, 47.5mm). The velocity vector field, concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the height difference of two jets through the two nozzles increases, the solid particle recirculation zone and the dense zone in the combustion chamber become large. The solid particle concentration at the center of the combustion chamber gets dense because the particle velocity remains slow due to the existence of the solid particle recirculation zone. The particle concentration in the combustion chamber can also be influenced by the hight difference of two jets.

  • PDF

Study on Two Phase Flow of Two Jets Existing Velocity Difference (속도차가 존재하는 두 분류의 2상유동에 관한 연구)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.515-521
    • /
    • 1998
  • In this study the mixing process of two-phase flow which makes two jets existing vlocity difference are analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid pariticle with air and the velocity in the secondary jet is changed into three kinds velocities(0.60, 75m/s) The velocity vector field concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the velocity of secondary jet increases the solid particle recirculation zone becomes larger. Also solid particle concentration gets dense due to velocity decrement of particles.

  • PDF

Study on Pneumatic Transport for Pulverized coal Combustion (미분탄 연소를 위한 공기압 수송에 관한 연구)

  • Oh, C.S.;Choi, B.S.;Hong, S.S.;Hwang, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.299-305
    • /
    • 1992
  • Saltation occurs in horizontal flow of solid and gas when the carrier gas velocity is small enough to permit enough to settling of the solid particles within the transport line. So we should examine the pneumatic flow system to lessen the unbured carbon in the power plant. In this paper the saltation velocity was studied on the various solid flow rate in the constant pipe diameter and on the various temperatures of the flow gas. The air velocity in the power plant transport lines was also surveyed in order to compare with the saltation velocity. As the solid flow rate increased in the constant diameter, saltation velocity increased and as the temperater of the flow gas inereased in the transport line, saltation velocity also increased.

  • PDF

Properties of Cenosphere Particle in the Fly Ash Generated from the Pulverized Coal Power Plant (석탄화력 발전소에서 생성되는 석탄회에서 Cenosphere 입자의 특성에 관한 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1881-1891
    • /
    • 2000
  • Cenosphere particles of different fly ash formed at the pulverized coal power plant were hollow sphere or filled with small particles inside solid particles. And size was relatively larger than other fly ash particles as well as specific gravity was small to suspend in the water. In this paper, it was demonstrated to contain a variety of morphological particle type, and the physical and chemical properties related to the cenosphere and fly ash particles. Furthermore it was estimated the possibility to reuse the cenosphere particles on the base of cenosphere properties. Cenosphere formation resulted from melting of mineral inclusion in coal, and then gas generation inside the molten droplet. As the aluminosilicate particle was progressively heated, a molten surface layer developed around the solid core. Further heating leaded to cause the formation of fine particles at the core. The mass median diameter(MMD) of cenosphere particles was $123.11{\mu}m$ and the range of size distribution was $100{\sim}200{\mu}m$ with single modal. It was represented that specific density was $0.67g/cm^3$ fineness was $1135g/cm^3$. The chemical components of cenosphere were similar to other fly ash including $SiO_2$, $Al_2O_3$, but the amount of the chemical component was different respectively. In the case of fly ash, $SiO_2$ concentration was 54.75%, and $Al_2O_3$ concentration was 21.96%, so this two components was found in 76.71% of the total concentration. But in the case of cenosphere, it was represented that $SiO_2$ concentration was 59.17% and $Al_2O_3$ concentration was 30.16%, so this two components was found in 89.33% of the total concentration. Glassy component formed by the aluminosilicate was high in the cenosphere, so that it was suitable to use insulating heat material.

  • PDF

Analysis of Gas-Solid Flow for the Optimum Design of Coal Splitter (입자분리기 최적 설계를 위한 다상 유동 해석)

  • Yok, Sim-Kyun;Ryu, Jae-Wook;Ik-Hyeong;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1604-1611
    • /
    • 2003
  • The experimental investigation of a coal splitter used in the 500㎿(e) boilers of fossil power plant is carried out to validate the design criteria. To predict air flow and the amount of particles at the exit, velocity and the weight of particles are measured on test planes using the coal splitter model with two-dimensional phase doppler particle analyzer and the glass fiber filter. It is found that the position of guide plate influences significantly both flow rates of gas and particle at the exit. Gas flow rate was a linear function of the guide plate, whereas particle flow rate was a exponential function of it.

Electrochemical Properties of Cathode according to the Type of Sulfide Electrolyte and the Application of Surface Coating

  • Yoon, Da Hye;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-136
    • /
    • 2021
  • The electrochemical performance of all-solid-state cells (ASSCs) based on sulfide electrolytes is critically affected by the undesirable interfacial reactions between oxide cathodes and sulfide electrolytes because of the high reactivity of sulfide electrolytes. Based on the concept that the interfacial reactions are highly dependent on the type of sulfide electrolyte, the electrochemical properties of the ASSCs prepared using three types of sulfide electrolytes were observed and compared. The Li2MoO4-LiI coating layer was also introduced to suppress the interfacial reactions. The cells using argyrodite electrolyte exhibited a higher capacity and Coulombic efficiency than the cells using 75Li2S-22P2S5-3Li2SO4 and Li7P3S11 electrolytes, indicating that the argyrodite electrolyte is less reactive with cathodes than other electrolytes. Moreover, the introduction of Li2MoO4-LiI coating on the cathode surface significantly enhanced the electrochemical performance of ASSCs because of the protection of coating layer. Pulverization of argyrodite electrolyte is also effective in increasing the capacity of cells because the smaller size of electrolyte particles improved the contact stability between the cathode and the sulfide electrolyte. The cyclic performance of cells was also enhanced by pulverized electrolyte, which is also associated with improved contact stability at the cathode/electrolyte. These results show that the introduction of Li2MoO4-LiI coating and the use of pulverized sulfide electrolyte can exhibit a synergic effect of suppressed interfacial reaction by the coating layer and improved contact stability owing to the small particle size of electrolyte.

Pulverizer Development for multiple cracking of polymer materials (고분자재료의 다중파쇄 분쇄기 개발)

  • Jung H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1668-1671
    • /
    • 2005
  • Vulcanized natural rubber was pulverized using a single screw extruder in a non-cryogenic Solid Shear Extrusion process where rubber granulates were subjected to high compressive and shear stresses. The producted particles had diameters ranging from 40 to 1200$\{mu}m$. A principle used in this paper was developed in Russia. The development method for producing a polymeric material powder consists in compressing said material by shearing the material during a pressure increase and cooling. Consecutive breakdown is carried out by shearing the material during the pressure decrease and cooling.

  • PDF

Densification Study of K+-beta-aluminas Prepared from Their Ultra-fine Milled Powder (초미세 분쇄 분말로 제조된 K+-beta-aluminas의 치밀화 연구)

  • Shin, Jae-Ho;Kim, Woo-Sung;Lim, Sung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.648-652
    • /
    • 2005
  • A super ionic conductor, $K^+$-beta-aluminas, which is known to be difficult to obtain in the form of dense sintered density under atmospheric pressure, was pulverized to 350 nm mean particle size using attrition mill. The sample were pressed into tablet form by uniaxial pressing. The specimen was sintered under atmospheric pressure in powder form. Sintering temperature range was $1400^{\circ}C$ to $1650^{\circ}C$ at $50^{\circ}C$ intervals. Additionally, zone sintering was carried out to control the growth grain at high temperature ($1600^{\circ}C$). The density of specimens that were sintered at $1600^{\circ}C$ and $1650^{\circ}C$, and sintered at $1600^{\circ}C$ by zone sintering were about 93% and 95%, respectively. In the case of the lengthened sintering time to 2 h, the density of specimen was reduced to lower than 90%, since the particles were grown to the duplex microstructure.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.