• Title/Summary/Keyword: Pulsed power system

Search Result 211, Processing Time 0.025 seconds

Efficient Control Method for ZVS Full-Bridge Converter with Periodic Pulsed-Load Output Dynamic Improvement (주기적인 펄스 부하에서 ZVS Full-Bridge 컨버터의 효율 증대를 위한 제어 방법과 출력 동특성 향상 분석)

  • Lee, Dong-Young;Kim, Jung-Won;Cho, Bo-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.939-941
    • /
    • 2001
  • An efficient control method of ZVS Full-bridge PWM converter with a periodic pulsed-load current is proposed. This novel control method can reduce the switching loss of switches during no load condition. Moreover, by using feed-forwarded load current information this method can obtain better transient dynamics compared to the system with only linear feedback control.

  • PDF

Electromagnetic Launcher Sub-scaling Relationships and Small System Design for Research and Educational Purposes

  • Yun, Heedo
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.65-71
    • /
    • 2000
  • Although the electromagnetic launcher technology has been progressed significantly during the past two decades the number of firing test facilities are not many. This is prbably due to the large budget and man power required to build and maintain full scale electromagnetic launcher facilities. As the EM launcher technology's potential capabilities have been somewhat demonstrated with the full scale large systems the research is now headed more toward overcoming specific difficulties and answering questions experimentally with smaller, cost effective systems. The first half of this paper presents EM launcher's improved sub-scaling relationships based upon magnetic, thermal and momentum differential equations and EM launcher's basic equations. With the proposed scaling method the field variables can be matched or scaled linearly between the two geometrically scaled systems. The second half of the paper presents pulsed power system's circuit analysis and design technique, which is applied to the capacitor-powered small pulsed power system with crow-barring circuitry. The effect of the so-called speed volt is included. A sub-scaled small system's design is provided as an example.

  • PDF

Development of the High Voltage Converter for the Pulsed Light Sterilization (광펄스 살균을 위한 다채널 고전압 컨버터의 개발)

  • Lee, Young-Woo;Kim, Hyung-Won;Choi, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2012
  • As the demand for the fresh non-thermal food is increased, it is required to develop the fast and perfect sterilization method. The conventional sterilization method using ultraviolet lamp has some disadvantages such as imperfect sterilization and longer process time. In this research, IPL(Intense Pulsed Light) sterilization system is introduced to overcome the drawbacks of the conventional system, and suitable power supply architecture for the system is discussed. Since the IPL sterilization system uses Zenon lamps which requires the 600~2,100[V] for the lightning and 16~30[kV] for the trigger, the converter for the system should be able to generate the high voltage and to discharge the large amount of energy instantaneously. In this research a new power system architecture which has a modified forward converter topology with two switches for generating high voltage and a capacitor bank to control the energy for the lightning by switching is introduced.

Development of 100MW's 150kJ Compact Pulsed Power Supply (수백MW급 150kJ 집적화 펄스전원 개발)

  • Kim, Jin-Sung;Lee, Byung-Ha;Kim, Sung-Ho;Yang, Kyung-Seoung;Kim, Young-Bae;Kim, Jong-Soo;Jin, Yun-Sik;Ryoo, Hong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1383_1384
    • /
    • 2009
  • In this study, CPPS(Compact Pulsed Power Suppy) has been developed. The goals of CPPS are charging energy 150kJ, trapezoidal pulsed power shaping of 150~250MW with about 1msec pulse width, consecutive charging rate of several times/min, and total system volume below $0.5m^3$. The CPPS is composed of 4 modules of 37.5kJ which can be operated independently. This paper describes the design, setup and performance of CPPS in experiment and simulation.

  • PDF

The high repetition operating characteristics of pulsed Nd:YAG laser by alternating charge-discharge system (펄스형 Nd:YAG 레이저의 교번 충.방전 방식에 의한 고반복 동작특성)

  • Kim, W.Y.;Park, K.R.;Kim, B.G.;Hong, J.H.;Kang, U.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2204-2206
    • /
    • 1999
  • Pulsed Nd:YAC laser is used widely for materials processing and instrumentation. It is very important to control the laser energy density in materials processing by a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this study, the alternating charge-discharge system was designed to adjust a pulse repetition rate. This system is controlled by one chip microprocessor and allows to replace an expensive condenser for high frequency to a cheap condenser for low frequency. In addition. we have investigated the current pulse shape of flashlamp and the operating characteristics of a pulsed Nd:YAG laser. As a result, it is found that the laser output of the power supply using the alternating charge-discharge system is not less than that of typical power supply. As the pulse repetition rate rises from 30pps to 120pps by the step of 30pps at 1200V, it is found that the laser efficiency decreases but the laser output power increases about 6W at each step.

  • PDF

Reactive Power Compensator for Pulsed Power Electric Network of International Thermonuclear Experimental Reactor (국제 열핵융합실험로 펄스전원계통의 무효전력보상기 검증)

  • Jo, Hyunsik;Jo, Jongmin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.290-295
    • /
    • 2015
  • Analysis and verification of reactive power compensator (RPC) for ITER pulsed power electric network (PPEN) are described in this paper. The RPC system is rated for a nominal power of 250 Mvar necessary to comply with the allowable reactive power limit value from the grid 200 Mvar. This system is currently under construction and is based on static var compensation technology with a thyristor-controlled reactor and a harmonic filter. The RPC minimizes reactive power from grid using prediction of reactive power consumption of AC-DC converters. The feasibility of the reactive power compensation was verified by assembling a real controller and implementing ITER PPEN in the real time digital simulator for the hardware-in-loop facility. When maximum reactive power is reached, grid voltage is stabilized and maximum reactive power decreased from 120 Mvar to 40 Mvar via the reactive power prediction method.

Development of a pulsed Nd:YAG laser materials processing system (정밀 용접용 펄스형 Nd:YAG 레이저 가공기 개발)

  • 김덕현;정진만;김철중;이종민
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 1991
  • A 200W pulsed Nd: YAG laser for fine welding was developed. The important laser parameters such as laser peak power, average power, pulse width, and pulse energy for welding were studied. In order to obtain the sufficient laser power density for welding, thermal lensing effects were analyzed and a laser resonator with laser beam divergence was designed. The power supply unit was designed to support up to 7kW input. The pulse control unit was developed using a GTO thyristor and could control over 100kW input power to obtain 3.5kW peak power laser. Also due to the GTO thyristor the pulse width could be varied continuously from 0.1 to 20 msec and maximum repetition rate was as high as 300pps.

  • PDF

Implementation of the Radiation Protection Module for Electronic Equipment from Pulsed Radiation and Its Function Tests (펄스방사선에 대한 전자장비 방호용 모듈구현 및 기능시험)

  • Lee, Nam-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1421-1424
    • /
    • 2013
  • The electronic equipment which is exposed to high level pulsed radiation is damaged by Upset, Latchup, and Burnout. Those damages come from the instantaneous photocurrent from electron-hole pairs generated in itself. Such damages appear as losses of a power in military weapon system or as a blackout in aerospace equipment and eventually caused in gross loss of national power. In this paper, we have implemented a RDC(Radiation detection and control module) as a part of the radiation protection technology of the electronic equipment or devices from the pulsed gamma radiation. The RDC, which is composed of pulsed gamma-ray detection sensor, signal processors, and pulse generator, is designed to protect the an important electronic circuits from the a pulse radiation. To verify the functionality of the RDC, LM118s, which had damaged by the pulse radiation, were tested. The test results showed that the test sample applied with the RDC was worked well in spite of the irradiation of a pulse radiation. Through the experiments we could confirm that the radiation protection technology implemented with the RDC had the functionality of radiation protection for the electronic devices.

The Properties of Multi-Layered Optical Thin Films Fabricated by Pulsed DC Magnetron Sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조된 다층 광학박막의 특성)

  • Kim, Dong-Won
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.211-226
    • /
    • 2019
  • Optical thin films were deposited by using a reactive pulsed DC magnetron sputtering method with a high density plasma(HDP). In this study, the effect of sputtering process conditions on the microstructure and optical properties of $SiO_2$, $TiO_2$, $Nb_2O_5$ thin films was clarified. These thin films had flat and dense microstructure, stable stoichiometric composition at the optimal conditions of low working pressure, high pulsed DC power and RF power(HDP). Also, the refractive index of the $SiO_2$ thin films was almost constant, but the refractive indices of $TiO_2$ and $Nb_2O_5$ thin films were changed depending on the microstructure of these films. Antireflection films of $Air/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/Glass$ structure designed by Macleod program were manufactured by our developed sputtering system. Transmittance and reflectance of the manufactured multilayer films showed outstanding value with the level of 95% and 0.3%, respectively, and also had excellent durability.

COMPUTATIONAL MODELING AND SIMULATION OF METAL PLASMA GENERATION BETWEEN CYLINDRICAL ELECTRODES USING PULSED POWER (펄스파워를 이용한 실린더형 전극간 금속 플라즈마 생성현상의 전산유동해석)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.68-74
    • /
    • 2014
  • This computational study features the transient compressible and inviscid flow analysis on a metallic plasma discharge from the opposing composite electrodes which is subjected to pulsed electric power. The computations have been performed using the flux corrected transport algorithm on the axisymmetric two-dimensional domain of electrode gap and outer space along with the calculation of plasma compositions and thermophysical properties such as plasma electrical conductivity. The mass ablation from aluminum electrode surfaces are modeled with radiative flux from plasma column experiencing intense Joule heating. The computational results shows the highly ionized and highly under-expanded supersonic plasma discharge with strong shock structure of Mach disk and blast wave propagation, which is very similar to muzzle blast or axial plasma jet flows. Also, the geometrical effects of composite electrodes are investigated to compare the amount of mass ablation and penetration depth of plasma discharge.