• 제목/요약/키워드: Pulsed laser deposition (PLD) method

검색결과 69건 처리시간 0.025초

펄스 레이저 증착법을 이용한 유기 박막의 제작 (Fabrication of Organic Thin Films by Pulsed Laser Deposition)

  • 박상무;이붕주
    • 한국진공학회지
    • /
    • 제17권5호
    • /
    • pp.455-460
    • /
    • 2008
  • 최근까지 유기박막의 제조에 있어서 진공 증착 혹은 스핀코팅법의 대체방법으로 펄스 레이져 증착법 (PLD: Pulsed laser deposition)에 많은 관심이 되고 있는 실정이다. 본 논문에서는 유기발광소자(OLED)의 제작을 위해 $Alq_3$(aluminato-tris-8-hydroxyquinolate)와 TPD의 유기물을 질소($N_2$)분위기 상태에서 KrF($\lambda$=278 nm) 엑시머 레이저를 이용한 PLD법으로 증착하였고, 증착공정변화에 따른 증착된 박막의 분자 및 광학적 특성의 효과를 PL과 FT-IR등을 이용하여 평가하였다.

다이아몬드상 카본박막의 펄스레이저 증착법 연구 (A Study on the Pulsed Laser Deposition of Diamond like Carbon Thin Films)

  • 심경석;이상렬
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권6호
    • /
    • pp.403-409
    • /
    • 1999
  • We fabricated diamond like carbon (DLC) thin films using pulsed laser deposition (PLD) method. Among many deposition parameters, the effects of the deposition temperature and the laser energy density were investigated. Structural properties of the films were studied by Raman spectroscopy. The surface morphologies and cross-section imagies of the films were investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM) respctively. DLC thin films fabricated at $12 J/cm^2$ of a laser energy density and $300^{\circ}C$ of a deposition temperature showed the best quality.

  • PDF

PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성 (Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method)

  • 이홍찬;심광보;오영제
    • 센서학회지
    • /
    • 제15권2호
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

PM OLED 디바이스 제작을 위한 PLD 공정 개발에 관한 연구 (A Study on Development of PLD Process for PM OLED Device Manufacture)

  • 이의식;이병욱;김창교;홍진수;박성훈;문순권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.264-266
    • /
    • 2005
  • Manufacture of OLED device used thermal evaporation method. However thermal evaporation method has many defect as thermal damage of substrate, difficult of dopant rate control and low utilization of organic materials. so we suggest PLD(Pulsed Laser Deposition) method that solution of these problems. PLD method has many advantage as without thermal damage, easy indicate of deposition rate per one pulse and good utilization of organic materials. In this paper we apply the PLD method for manufacture of device so we present high efficiency device manufacture using PLD method that has good deposition uniformity, surface rough and deposition rate.

  • PDF

Growth of oriented $LaF_{3}$ thin films on Si (100) substrates by the pulsed laser deposition method

  • Yokotani, Atsushi;Ito, Tomomi;Sato, Akiko;Kurosawa, Kou
    • 한국결정성장학회지
    • /
    • 제13권4호
    • /
    • pp.157-164
    • /
    • 2003
  • $LaF_{3}$ thin films have been fabricated on Si (100) substrates under the highest possible vacuum condition by pulsed laser deposition (PLD) method. The temperature of the sbustrate varied from $20^{\circ}C$ to $800^{\circ}C$. The films deposited at the higher temperature indicated the sharper peaks in the X-ray diffraction measurement. A highly oriented film was successfully obtained at a substrate temperature of $800^{\circ}C$. The surface observation by the AFM revealed that the many hexagonal structures constructed the film. The XPS analysis revealed that the lacking of F in the film deposited at $600^{\circ}C$ were much more than that in film at $^20{\circ}C$. Adding the adequate amount of $CF_{4}$ gas in the growth chamber can compensate this lacking of F.

Pulsed laser depostion (PLD)법으로 증착된 $BaTiO_3/SrTiO_3$ 산화물 초격자의 성장 및 유전특성 (Growth and dielectric Properties or $BaTiO_3/SrTiO_3$ oxide artificial superlattice deposited by pulsed laser deposition (PLD))

  • 김주호;김이준;정동근;김용성;이재찬
    • 한국진공학회지
    • /
    • 제11권3호
    • /
    • pp.166-170
    • /
    • 2002
  • $BaTiO_3$(BTO)/$SrTiO_3$(STO) 산화물 인공 초격자가 MgO(100) 단결정 기판위에 Pulsed laser deposition(PLD)법으로 증착되었다. 다층구조에서 BTO/STO 층의 적층 주기는 $BTO_{1\;unit\; cell}/STO_{1\;unit\; cell}$에서 $BTO_{125\;unit\; cell}/STO_{125 \;unit \;cell}$ 두께로 변화시켰고 초격자 전체 두께는 100 m으로 고정시켰다. X-ray 회절 결과는 다양한 주기의 BTO/STO 산화물 박막에서 초격자의 특성을 보였고 투과형 전자 현미경을 통해서 BTO와 STO의 두 층간의 계면에서 상호확산이 일어나지 않고 초격자가 잘 성장된 것을 확인하였다. 초격자의 유전율은 임계 두께 내에서 적층주기가 감소함에 따라 증가하였다. 이러한 초격자의 유전율은 낮은 주기 즉 $BTO_{2\;unit\; cell}/STO_{2\;unit\; cell}$ 주기에서 1230으로 높게 나왔으며 이러한 원인은 격자 변형(c/a ratio)에 기여된 것으로 분석되었다.

PLD를 이용한 (100) $LaAlO_3$ 기판위의 ZnO 에피택셜 박막 성장 (Epitaxial Growth of ZnO Thin Films on (100) $LaAlO_3$ Substrate by Pulsed Laser Deposition)

  • 조대형;김지홍;문병무;조영득;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.256-256
    • /
    • 2008
  • We report epitaxial growth of ZnO thin films on (100) single-crystalline $LaAlO_3$ (LAO) substrates using pulsed laser deposition (PLD) at different substrate temperatures (400~$800^{\circ}C$). The structural and electrical properties of the films have been investigated by means of X-ray diffraction (XRD), atomic force microscope (AFM), transmission line method (TLM). The poly-crystalline of $\alpha$- and c-axis oriented ZnO film was formed at lower deposition temperature ($T_s$) of $400^{\circ}C$. At higher $T_s$, however, the films exhibit single-crystalline of $\alpha$-axis orientation represented by ZnO[$\bar{1}11$ || LAO <001>. The electrical properties of ZnO thin films depend upon their crystalline orientation, showing lower electrical resistivity values for $\alpha$-axis oriented ZnO films.

  • PDF

투명 ZnO를 활성 채널층으로 하는 박막 트랜지스터 (Thin Film Transistor with Transparent ZnO as active channel layer)

  • 신백균
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권1호
    • /
    • pp.26-29
    • /
    • 2006
  • Transparent ZnO thin films were prepared by KrF pulsed laser deposition (PLD) technique and applied to a bottom-gate type thin film transistor device as an active channel layer. A high conductive crystalline Si substrate was used as an metal-like bottom gate and SiN insulating layer was then deposited by LPCVD(low pressure chemical vapour deposition). An aluminum layer was then vacuum evaporated and patterned to form a source/drain metal contact. Oxygen partial pressure and substrate temperature were varied during the ZnO PLD deposition process and their influence on the thin film properties were investigated by X-ray diffraction(XRD) and Hall-van der Pauw method. Optical transparency of the ZnO thin film was analyzed by UV-visible phometer. The resulting ZnO-TFT devices showed an on-off ration of $10^6$ and field effect mobility of 2.4-6.1 $cm^2/V{\cdot}s$.

레이저 빔에 의한 YBCO 표면변조 연구 (Study on YBCO Surface Modification by Laser Beam)

  • 정영식;이상렬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1996년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 1996
  • Surface modification like cone formation on Pulsed laser deposition (PLD) occurs in YBCO target surface irradiated by laser beam. Cone formation results in a reduction of deposition rate, so that it is significant obstacles to an efficient deposition process. With the change of various conditions such as the number of laser shot, target density, direction of incoming laser beam, we have systematically analyzed the modification of target surface. Because cones formed by beam-target interactions grow in direction of incoming laser beam, we have used the method of rotating the target position by 180$^{\circ}$ with the same number and position of laser shot. Experimental results of losing the directionality and changing the shape of cones formed on laser irradiated YBCO target surface is obtained by the SEM image. Also, we have observed that the size of cones formed on target by pulsed laser became larger with increasing the number of laser shots.

  • PDF

PLD를 이용한 hetero-epitaxial As-doped ZnO 박막 증착 조건의 최적화 (Optimization of the deposition condition on hetero-epitaxial As-doped ZnO thin films by pulsed laser deposition)

  • 이홍찬;정연식;최원국;박훈;심광보;오영제
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.207-210
    • /
    • 2005
  • In order to investigate the influence of the homo buffer layer on the microstructure of the ZnO thin film, undoped ZnO buffer layer were deposited on sapphire (0001) substrates by ultra high vaccum pulsed laser deposition (UHV-PLD) and molecular beam eiptaxy (MBE). After high temperature annealing at $600^{\circ}C$ for 30min, undoped ZnO buffer layer was deposited with various oxygen pressure (35~350mtorr). On the grown layer of undoped ZnO, Arsenic-doped(l, 3wt%) ZnO layers were deposited by UHV-PLD. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement. From $\Theta-2\Theta$ XRD analysis, all the films showed strong (0002) diffraction peak, and this indicates that the grains grew uniformly with the c-axis perpendicular to the substrate surface. Field emission scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO were varied with oxygen pressure, arsenic doping level, and the deposition method of undoped ZnO buffer layers. The films became denser and smoother in the cases of introducing MBE-buffer layer and lower oxygen pressure during As-doped ZnO deposition. Higher As-doping concentration enhanced the columnar-character of the films.

  • PDF