• Title/Summary/Keyword: Pulsed laser deposition (PLD)

Search Result 324, Processing Time 0.025 seconds

Fabrication of Organic Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법을 이용한 유기 박막의 제작)

  • Park, Sang-Moo;Lee, Boong-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.455-460
    • /
    • 2008
  • In recent years, there has been highly interestedin pulsed laser deposition (PLD) method for fabrication of the organic thin films, as an alternative to conventional fabrication method such as vacuum evaporation and spin coating techniques. In this study, organic thin films of $Alq_3$ (aluminato-tris-8-hydroxyquinolate) and TPD for organic light emitting diodes (OLED) were deposited by PLD using KrF excimer ($\lambda$=278 nm) laser in nitrogen atmosphere. Deposited films were evaluated by photoluminescence(PL), Fourier-transform Infrared Spectroscopy (FT-IR) to study the effect of the laser and $N_2$ atmosphere parameters on the structural and optical properties.

Structure and optical Properties of $Gd_{2}O_{3}$ thin films on glass Prepared by Pulsed Laser Deposition (레이저 층착법에 의해 형성된 $Gd_{2}O_{3}$박막의 구조와 광학적 특성)

  • Lee, Kyoung-Cheol;Lee, Cheon;Cho, S.;Park, J.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.362-364
    • /
    • 2001
  • The pulsed laser deposition(PLD) technology was used for the deposition of phosphor substance, Gd$_2$O$_3$on commercial glass. An Nd:YAG laser was employed for the deposition (wavelength 266nm, energy up to 100mJ/pu1se, pulse duration is 5ns and repetition rate 10 Hz). With respect to films grown by conventional PLD, this study exhibited the condition at normal temperature. Experiments were done without any reactive gas at a pressure of 10$^{-5}$ ~10$^{-6}$ Torr using second harmonic(λ=532 nm) and fourth harmonic(λ=266 nm) Nd:YAG laser. Analyses of the deposited material grown are performed by EDX, AFM, SEM, PL meseurements.

  • PDF

The Structural Characteristic and Surface Morphology of ZnO Thin Films by Pulsed Laser Deposition (PLD를 이용한 ZnO 박막의 구조적 특성과 표면의 형태에 관한 연구)

  • Kim, Jae-Hong;Lee, Kyoung-Cheol;Lee, Cheon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.231-234
    • /
    • 2003
  • ZnO thin films on (100) p-type silicon substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266nm. The influence of the deposition parameters, such as oxygen pressure, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for oxygen gas flow rate of 100~700 sccm and substrate temperatures in the range of 200~$500^{\circ}C$. We investigated the structural and morphological properties of ZnO thin films using X-ray diffraction(XRD), scanning electron microscopy(SEM) and atomic force microscopy(AFM).

Photoluminescence characteristics of ZnO thin films by Pulsed laser deposition (PLD를 이용한 ZnO 박막의 발광에 관한 연구)

  • Kim, Jae-Hong;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1030-1033
    • /
    • 2002
  • ZnO thin films on (100)p-type silicon substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YGA laser with a wavelength of 266nm. The influence of the deposition parameters, such as oxygen pressure, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for substrate temperatures in the range of $200{\sim}500^{\circ}C$ and oxygen pressure in the range of $10^{-2}{\sim}10^2mTorr$. We investigated the structural, morphological and optical properties of ZnO thin films using X-ray diffraction(XRD), atomic force microscopy(AFM), photoluminescence(PL).

  • PDF

Correlation Between Deposition Parameters and Photoluminescence of ZnO Semiconducting Thin Films by Pulsed laser Deposition (PLD증착 변수에 따른 II-VI족 화합물 ZnO 반도체 박막의 발광 특성 연구)

  • 배상혁;윤일구;서대식;명재민;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.246-250
    • /
    • 2001
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of355 nm. In order to investigate the emission properties of ZnO thin films, Pl measurements with an Ar ion laser a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited Pl bands centers around 390, 510 and 640 nm, labeled near ultra-violet(UV), green and orange bands. Structural properties of ZnO thin films are analyzed with X-ray diffraction(XRD).

  • PDF

Effects of Post-Annealing Treatment of ZnO Thin Films by Pulsed Laser (PLD를 이용한 ZnO 박막의 후열처리에 관한 연구)

  • Lee Cheon;Kim Jae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.103-108
    • /
    • 2005
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266nm. Before post-annealing treatment in the oxygen ambient, the experiment of the deposition of ZnO thin films has been performed for substrate temperatures in the range of $300\~450^{\circ}C$ and oxygen gas flow rate of $100\~700\;sccm$. In order to investigate the effect of post-annealing treatment of ZnO thin films, films have been annealed at various temperatures after deposition. After post-annealing treatment in the oxygen ambient, the structural properties of ZnO thin films were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the optical properties of the ZnO were characterized by photoluminescence(PL).

Optical properties of Si thin films grown by PLD (PLD로 제작한 Si 박막에서의 광학적 특성분석)

  • 배상혁;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.532-534
    • /
    • 2000
  • Si thin films on p-type (100) Si substrate have been fabricated by pulsed laser deposition technique using a Nd:YAG laser. The pressure of the environmental gas during deposition was varied from 1 to 3 Torr. After deposition, Si thin film has been annealed again at nitrogen ambient. Strong violet-indigo photoluminescence have been observed from Si thin film annealed in nitrogen ambient gas. As increasing environmental gas pressure, weak green and red emissions from annealed Si thin films also observed by photoluminescence.

  • PDF

A Study on the Pulsed Laser Deposition of Diamond like Carbon Thin Films (다이아몬드상 카본박막의 펄스레이저 증착법 연구)

  • Sim, Gyeong-Seok;Lee, Sang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.403-409
    • /
    • 1999
  • We fabricated diamond like carbon (DLC) thin films using pulsed laser deposition (PLD) method. Among many deposition parameters, the effects of the deposition temperature and the laser energy density were investigated. Structural properties of the films were studied by Raman spectroscopy. The surface morphologies and cross-section imagies of the films were investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM) respctively. DLC thin films fabricated at $12 J/cm^2$ of a laser energy density and $300^{\circ}C$ of a deposition temperature showed the best quality.

  • PDF

The characteristics of ZnO Thin film on PES substrate by pulsed laser deposition (펄스레이저 증착법에 의한 polyethersulfone 기판상의 ZnO박막의 특성)

  • Choi, Young-Jin;Lee, Cheon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.113-115
    • /
    • 2010
  • In this study, ZnO films have been grown on PES(polyethersu]fone) substrate by PLD(pulsed laser deposition) and characterized as a change of laser density and substrate temperature. Growing conditions were changed with substrate temperatures ranging from 50 to $200^{\circ}C$ and laser densities ranging from $0.2\sim0.4 J/cm^2$. Optical and structural properties were measured by XRD, SEM, AFM, PL measurement.

Research Trend of Oxide Magnetic Films with Atomically Controlled Pulsed Laser Deposition (원자층 제어 PLD를 이용한 산화물 자성 박막 연구의 동향)

  • Kim, Bong-Ju;Kim, Bog-G.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.147-156
    • /
    • 2012
  • Recently, there have been considerable interests in various thin film growth techniques with atomically controllable thickness. Among them, atomically controlled pulsed laser deposition (PLD) technique is quite popular. We have developed advanced thin film growth technique using PLD and Reflection high energy electron diffraction (RHEED). Using the technique, the growth of oxide thin films with the precisely controllable thickness has been demonstrated. In addition, our technique can be applied to high quality thin film growth with minimal defect and bulk chemical composition. In this paper, our recent progresses as well as the current research trend on oxide thin films will be summarized.