• 제목/요약/키워드: Pulsed electrodeposition

검색결과 24건 처리시간 0.024초

Fabrication and Magnetic Properties of Various Shaped Co/Pt Magnetic Barcode Nanowires

  • 서정옥;최준락;남효승
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.39-39
    • /
    • 2007
  • 양극산화로 제조된 다공성 알루미늄 산화물template를 사용하여 Co/Pt 나노와이어 바코드를 Pulsed electrodeposition 방법으로 제조하였다. 도금 시간을 조절하여 나노와이어 바코드의 형상을 제어하였으며 이렇게 제조된 나노와이어 바코드의 자기적 성질을 SQUID를 이용하여 분석하였다. 나노와이어 바코드의 종횡비를 조절하여 나타나는 형상 이방성을 체계적으로 관찰하였고 나노와이어 바코드를 열처리하여 합금을 형성하였을 때 나타나는 자기적 특성의 증가를 관찰하였다.

  • PDF

Application of a Pulse Electric Field to Cross-flow Ultrafiltration of Protein Solution

  • Kim, Hyong-Ryul;Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제4권1호
    • /
    • pp.46-50
    • /
    • 1999
  • The application of pulsed electric field was investigated in the crossflow ultrafiltration of BSA (bovine serum albumn) to economize the application time of electric current as well as to avoid inherent problems of long-term application of electric field. During the application of various cyclic patterns of pulsed electric current, the averaged filtration flowrate and the degree of concentration were maintained higher than those obtained in the absence of electric current application. The temperature increase, pH change, and BSA loss by electrodeposition were all negligible during the operation. The averaged filtration flowrate increased as the ON/OFF duration ratio of electric current was higher and as the period of ON/OFF cycle was shorter. The re-establishment of concentration polarization was dependent to the duration of current OFF state and, therefore, a longer duration of OFF state was not favorable in maintaining higher filtration flow rate. Although the averaged filtration flowrate was enhanced as the magnitude of electric current increased, the flowrate enhancement became smaller as the magnitude of current value above which the degree of electrokinetic depolarization is no further improved.

  • PDF

(TlPbBi)-(SrBa)-Ca-Cu-O superconducting films obtained by electrodeposition process

  • 백상민;이준호;김봉준;박기곤;김영철;정대영;심윤보
    • Progress in Superconductivity
    • /
    • 제4권2호
    • /
    • pp.157-161
    • /
    • 2003
  • We have performed the electrochemical method to fabricate high temperature superconducting (TlPbBi) -(SrBa)-Ca-Cu-O films. The precursors of the superconducting sample were codeposited at a periodic pulsed-potential cycle (1 second at -4V and 1 second at -1V) on a silver substrate. The variation of structure, microstructure and element were analysed by ICP and SEM techniques. The specimens were consisted predominantly of the Tl-1212 phase and have a transition temperature of 80~87 K in low magnetic field. It was showed that each grain has the stoichiometric ratio of $T1_{0.7}$Pb_$Bi_{0.3}$ $_Sr{0.1}$ $Ba_{2.4}$ $Ca_{0.2}$ $Cu_{1.2}$ $2.5/O_{x}$ by EDX analysis.sis.

  • PDF

펄스 전기도금법에 의해 제조된 n형 Bi2(Te-Se)3 박막의 Cu 도핑에 따른 열전특성에 관한 연구 (Study on Thermoelectric Properties of Cu Doping of Pulse-Electrodeposited n-type Bi2(Te-Se)3 Thin Films)

  • 허나리;김광호;임재홍
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.40-45
    • /
    • 2016
  • Recently, $Bi_2Te_3$-based alloys are the best thermoelectric materials near to room temperature, so it has been researched to achieve increased figure of merit(ZT). Ternary compounds such as Bi-Te-Se and Bi-Sb-Te have higher thermoelectric property than binary compound Bi-Te and Sb-Te, respectively. Compared to DC plating method, pulsed electrodeposition is able to control parameters including average current density, and on/off pulse time etc. Thereby the morphology and properties of the films can be improved. In this study, we electrodeposited n-type ternary Cu-doped $Bi_2(Te-Se)_3$ thin film by modified pulse technique at room temperature. To further enhance thermoelectric properties of $Bi_2(Te-Se)_3$ thin film, we optimized Cu doping concentration in $Bi_2(Te-Se)_3$ thin film and correlated it to electrical and thermoelectric properties. Thus, the crystal, electrical, and thermoelectric properties of electrodeposited $Bi_2(Te-Se)_3$ thin film were characterized the XRD, SEM, EDS, Seebeck measurement, and Hall effect measurement, respectively. As a result, the thermoelectric properties of Cu-doped $Bi_2(Te-Se)_3$ thin films were observed that the Seebeck coefficient is $-101.2{\mu}V/K$ and the power factor is $1412.6{\mu}W/mK^2$ at 10 mg of Cu weight. The power factor of Cu-doped $Bi_2(Te-Se)_3$ thin film is 1.4 times higher than undoped $Bi_2(Te-Se)_3$ thin film.

전기장을 이용한 나노와이어 희석기 제작 (Fabrication of a nanowire diluter using electrical fields)

  • 양진호;윤현중;양의혁;양상식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1484-1485
    • /
    • 2008
  • The control of the number and dimension of nanowires is essential for dielectrophoretic(DEP) nanoscale assembly process. However, it is difficult to control the number of nanowires assembled between the electrodes. We have developed a nanowire diluter device, which consists of a glass substrate with gold electrodes and a PDMS layer with microchannel. The diluter device is fabricated by the conventional and soft lithographies using a SU-8 mold. Nickel nanowires (30${\mu}m$-long) are fabricated by a template-directed electrodeposition process using nanoporous alumina templates. A solution containing nanowires is injected into an inlet whereby pulsed voltages are applied to 16 pairs of electrodes in this experiment. The nanowires are trapped or released depending on the pulsed electric field from inlet to outlet (the channel). Therefore, the number of nanowires can be decreased correspondingly if the fixed frequency at each electrode is decreased from electrode to electrode.

  • PDF

Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and Its Application for Electrochemical Capacitor

  • He, Huichao;Zhang, Yunhuai;Xiao, Peng;Yang, Yannan;Lou, Qing;Yang, Fei
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1613-1616
    • /
    • 2012
  • Ni nanoparticles-$TiO_2$ nanotube arrays (Ni/$TiO_2NTs$) composites were prepared by pulsed electrodeposition method and subsequently characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The FESEM results showed that highly dispersed Ni nanoparticles were not only loaded on the top of the $TiO_2NTs$ but also within the tubular structure, and the particle size of Ni prepared at different current amplitude (100, 200 and 300 $mA{\cdot}cm^{-2}$) was in the range of 15 to 70 nm. The electrochemical studies indicated that Ni nanoparticles loaded on the highly ordered $TiO_2NTs$ are readily accessible for electrochemical reactions, which improve the efficiency of the Ni nanoparticles and $TiO_2NTs$. A maximum specific capacitance (27.3 $mF.cm^{-2}$) was obtained on the Ni/$TiO_2NTs$ composite electrode that prepared at a current of 200 $mA.cm^{-2}$, and the electrode also exhibited excellent electrochemical stability.

템플릿 없이 전해 합성된 코발트 나노 로드 (Electrolytic Synthesis of Cobalt Nanorods without Using a Supporting Template)

  • 김성준;신헌철
    • 한국재료학회지
    • /
    • 제24권6호
    • /
    • pp.319-325
    • /
    • 2014
  • Cobalt nano-rods were fabricated using a template-free electrochemical-deposition process. The structure of cobalt electro-deposits strongly depends on the electrolyte composition and on the density of the applied current. In particular, as the content of boric acid increased in the electrolyte, deposits of semi-spherical nuclei formed, and then grew into one-dimensional nano-rods. From analysis of the electro-deposits created under the conditions of continuous and pulsed current, it is suggested that the distribution of the active species around the electrode/electrolyte interface, and their transport, might be an important factor affecting the shape of the deposits. When transport of the active species was suppressed by lowering the deposition temperature, more of the well-defined nano-rod structures were obtained. The optimal conditions for the preparation of well-defined nano-rods were determined by observing the morphologies resulting from different deposition conditions. The maximum height of the cobalt nano-rods created in this work was $1{\mu}m$ and it had a diameter of 200 nm. Structural analysis proved that the nano-rods have preferred orientations of (111).

전기화학적 전착에 의한 태양전지용 저가 유연 금속 메쉬 제작 (Preparation of Low-cost and Flexible Metal Mesh Electrode Used in the Hybrid Solar Cell by Simple Electrochemical Depositon)

  • 이주열;이상열;이주영;김만
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.123.1-123.1
    • /
    • 2017
  • Hybrid solar cells have intensively studied in recent years due to their advantages such as cost effectiveness and possibility of applications in flexible and transparent devices. It is critical to fabricate individual layer composed of organic and inorganic materials in the hybrid solar cell at low cost. Therefore, it is required to manufacture cheaply and enhance the photon-to-electricity conversion efficiency of each layer in the flexible solar cell industry. In this research, we fabricated pure Cu metal mesh electrode prepared by using electroplating and/or electroless plating on the Ni mold which was manufacture through photolithography, electroforming, and polishing process. Copper mesh was formed on the surface of nickel metal working master when pulsed electrolytic copper deposition were performed at various plating parameters such as plating time, current density, and so on. After electrodeposition at 2ASD for 5~30seconds, the line/pitch/thickness of copper mesh sheet was $1.8{\sim}2.0/298/0.5{\mu}m$.

  • PDF

n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성 (Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111))

  • 김현덕;박경원;이종덕
    • 한국정보통신학회논문지
    • /
    • 제10권9호
    • /
    • pp.1663-1670
    • /
    • 2006
  • 펄스 전기증착법에 의해 단결정 Fe 박막을 n-Si(111) 기판위에 직접 성장시켰다. CV 분석 을 통해 $Fe^{2+}n-Si(111)$ 계면은 쇼트키 장벽 형성에 따른 다이오드 특성을 가진다는 사실을 알 수 있었다. 또한 인가 전압에 따른 전기용량의 변화를 보여주는 Mott-Schottky chottky(MS) 관계식을 이용하여 전해질 내에서 n-Si(111) 기판의 flat-band potential(EFB)을 조사하였으며, 0.1M $FeCl_2$ 전해질 내에서 EFB와 산화-환원 전위는 각각 -0.526V 과 -0.316V 임을 알 수 있었다. Fe/n-Si(111) 계면반응 시, Fe 증착 초기 단계에서의 핵 형성과 성장 운동학은 과도전류 특성을 이용하여 조사하였으며, 과도전류 특성을 통해 Fe 박막의 성장모드는 "instantaneous nucleation and 3-dimensional diffusion limited growth"임을 알 수 있었다. 주파수가 300Hz, 최대 전압이 1.4V인 펄스 전압을 이용하여 n-Si(111) 기판위에 Fe를 직접 전기 증착 시켰으며, 형 성 된 Fe 박막은 단결정 ${\alpha}-Fe$로 Si 기판위에 ${\alpha}-Fe(110)/Si(111)$의 격자 정합성을 가지고 성장하였음을 XRD 분석을 통해 확인하였다.

pH, duty cycle, 교반, 첨가제가 Ni-TiO2 전기도금 복합체의 TiO2 공석특성과 열적안정성에 미치는 영향 연구 (A Study of pH, Duty Cycle, Agitation on the Property of Co-deposited TiO2 and Thermal Stability in the Electrodeposited Ni-TiO2 Composite)

  • 김명진;김정수;김동진;김홍표;황성식
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.97-105
    • /
    • 2012
  • The effects of pH, types of applied current, agitation method and time, additive on the amount of co-deposited $TiO_2$ particles in the matrix were investigated. The deposition rates increased with increasing pH values, while the volume fraction of $TiO_2$ particles and the size of agglomerated $TiO_2$ particles in the composite decreased. The volume fraction of $TiO_2$ particles in the composite decreased when pulsed current of 50% duty cycle was used. And the size of agglomerated $TiO_2$ particles in the nickel matrix of pulsed current was smaller than that of DC current specimen. The volume fraction of $TiO_2$ particles in the matrix decreased with longer time by air agitation, but in case of using magnetic bar, volume fraction in the same range of time was relatively constant. The volume fraction of the electrodeposited Ni-$TiO_2$ composite in the solution containing 0.01 M Dimethylamine borane (DMAB) increased slightly with increasing agitation time regardless of agitation methods. Thermal stability of the electrodeposited Ni-$TiO_2$ composite increased with lower pH at the temperature range of $200{\sim}800^{\circ}C$, and the results showed that the amount of co-deposited $TiO_2$ relies more on the deposition rate than zetapotential of $TiO_2$ particles.