• Title/Summary/Keyword: Pulsed current

Search Result 494, Processing Time 0.032 seconds

Pulse energy high Power test of metal film resistor (메탈 필름 저항의 펄스 대전력 시험)

  • Son, Y.G.;Jang, S.D.;Kwon, S.J.;Oh, J.S.;Cho, M.H.;Lee, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2103-2105
    • /
    • 2005
  • Metal film type of resistor have been tested to invest maximum usable power at the pulsed high voltage and pulsed high current. Experiments were carried out using capacitor charging power supply and dump switch. Pulsed amplitude were varied from 1kV to 25kV. The peak current reached was 1kA. Datasheet are given for the limited pulsed power and energy for metal film type of resistor in nanosecond and microsecond time range. The experimental investigation of the threshold loading of the resistor in the high current and voltage pulsed mode has shown that the process of destruction of resistor has specific features for each mode. The mechanisms of failure and destruction of resistors under action of high-voltage and high-current pulses are discussed.

  • PDF

Current Sensorless Control of the Voltage Bus Conditioner for a DC Power System with Parallel Pulsed Power Loads (병렬 펄스 부하를 갖는 직류 전력시스템을 위한 Voltage Bus Conditioner의 전류 센서 없는 제어)

  • Lee, Byung-Hun;Chang, Han-Sol;La, Jae-Du;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1617-1624
    • /
    • 2012
  • A DC power system has many loads with varied functions. Also, there may be large pulsed loads with short duty ratios which can affect the normal operation of other loads. In this paper, Voltage Bus Conditioner(VBC) without any current sensors is proposed to damp the bus voltage transients by parallel pulsed loads. The proposed control approach requires only one voltage sensor and carries out both the functions of damping the bus voltage transients and maintaining the level of energy stored. The proposed control technique has been implemented on a TMS320F2812 Digital Signal Processor(DSP). Simulated results by a Matlab Simulink and experimental results are presented which verify the control principles and demonstrate the practicalty of the approach.

Diamond-Like Carbon Films Deposited by Pulsed Magnetron Sputtering System with Rotating Cathode

  • Chun, Hui-Gon;You, Yong-Zoo;Nikolay S. Sochugov;Sergey V. Rabotkin
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.296-300
    • /
    • 2003
  • Extended cylindrical magnetron sputtering system with rotating 600-mm long and 90-mm diameter graphite cathode and pulsed power supply voltage generator were developed and fabricated. Time-dependent Langmuir probe characteristics as well as carbon films thickness were measured. It was shown that ratio of ions flux to carbon atoms flux for pulsed magnetron discharge mode was equal to $\Phi_{i}$ $\Phi$sub C/ = 0.2. It did not depend on the discharge current in the range of $I_{d}$ / = 10∼60 A since both the plasma density and the film deposition rate were found approximately proportional to the discharge current. In spite of this fact carbon film structure was found to be strongly dependent on the discharge current. Grain size increased from 100 nm at $I_{d}$ = 10∼20 A to 500 nm at $I_{d}$ = 40∼60 A. To deposit fine-grained hard nanocrystalline or amorphous carbon coating current regime with $I_{d}$ = 20 A was chosen. Pulsed negative bias voltage ($\tau$= 40 ${\mu}\textrm{s}$, $U_{b}$ = 0∼10 ㎸) synchronized with magnetron discharge pulses was applied to a substrate and voltage of $U_{b}$ = 3.4 ㎸ was shown to be optimum for a hard carbon film deposition. Lower voltages were not sufficient for amorphization of a growing graphite film, while higher voltages led to excessive ion bombardment and effects of recrystalization and graphitization.

Inspection of corrosion in under frame side sill for rolling stocks using pulsed eddy current testing (펄스 와전류(Pulsed eddy current)를 이용한 도시철도차량의 Under Frame Side Sill 부식 평가)

  • Kim, Woong-Ji;Song, Sung-Jin;Kim, Hak-Jun;Chung, Jung-Duk;Lee, Chan-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1117-1124
    • /
    • 2009
  • Under frame side sill of rolling stock structure is designed for preventing corrosion in order to meet mechanical requirements. However during long operation time more than 20 years, there are corrosion in the under frame side sill caused by environmental effect, vibration and etc. So, detection and evaluation of the corrosion ill the under frame nondestructive is one of important issues to extend their life time. Most of nondestructive methods are not easy to apply for detecting corrosion in the under frame side sill, since the under frame side sill consist of there layered with different material (stainless steel - stainless steel - mild steel) and each layer is connected by spot weld and plug weld. Fortunately, pulsed eddy current method claimed that it can be measured not only thickness change but also corrosion under their insulation layers. So, in this study, we have investigated performance of pulsed eddy current testing method by measuring thickness variation of fabricate of mock-up specimens. The investigation results obtained from mock-up specimens and the corrosion evaluation results of the aged rolling stocks will be presented.

  • PDF

Mechanical Properties and Fabrication of Nanostructured 2MoSi2-SiC by Pulsed Current Activated Combustion Synthesis (펄스 전류 활성 연소합성에 의한 나노구조의 2MoSi2-SIC제조 및 기계적 성질)

  • Shon, In-Jin;Kim, Dong-Ki;Jeong, In-Kyoon;Doh, Jung-Mann;Yoon, Jin-Kook;Ko, In-Yong
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2007
  • Dense nanostructured $2MoSi_{2}-SiC$ composites were synthesized by the pulsed current activated combustion synthesis (PCACS) method within 3 minutes in one step from mechanically activated powders of $Mo_{2}C$ and 5Si. Simultaneous combustion synthesis and densification were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense $2MoSi_{2}-SiC$ with relative density of up to 96% was produced under simultaneous application of a 60 MPa pressure and the pulsed current. The average grain size of $MoSi_{2}$ and SiC were about 120 nm and 90 nm, respectively. The hardness and fracture toughness values obtained were 1350 $kg/mm^{2}$ and 4 $MPa{\cdot}m^{1/2}$, respectively.

Application of a Pulse Electric Field to Cross-flow Ultrafiltration of Protein Solution

  • Kim, Hyong-Ryul;Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.46-50
    • /
    • 1999
  • The application of pulsed electric field was investigated in the crossflow ultrafiltration of BSA (bovine serum albumn) to economize the application time of electric current as well as to avoid inherent problems of long-term application of electric field. During the application of various cyclic patterns of pulsed electric current, the averaged filtration flowrate and the degree of concentration were maintained higher than those obtained in the absence of electric current application. The temperature increase, pH change, and BSA loss by electrodeposition were all negligible during the operation. The averaged filtration flowrate increased as the ON/OFF duration ratio of electric current was higher and as the period of ON/OFF cycle was shorter. The re-establishment of concentration polarization was dependent to the duration of current OFF state and, therefore, a longer duration of OFF state was not favorable in maintaining higher filtration flow rate. Although the averaged filtration flowrate was enhanced as the magnitude of electric current increased, the flowrate enhancement became smaller as the magnitude of current value above which the degree of electrokinetic depolarization is no further improved.

  • PDF

Development of Pulsed Power System for 500kA Current Generation

  • Lee, Hyeong-Ho;Seo, Kil-Soo;Kim, Yeong-Bae;Cho, Kook-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.23-28
    • /
    • 1999
  • The manufactured pulsed power system with 500kA current is described in this paper. The capacitor bank, control cabinent, dec charging unit, closing switch and dumping box, cable system etc. employed with the system components are described. Especially the development of the inverse pinch switch controlled by gas puffing enabled the generation of the very high voltage and current.

  • PDF

Composition Technology of Pulsed Power System with High Current (대전류 고속펄스파워시스템의 구성기술)

  • Lee, Hyeong-Ho;Seo, Kil-Soo;Kim, Young-Bae;Cho, Kook-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2179-2181
    • /
    • 1999
  • This paper describes the composition technology of pulsed power system with high current. The capacitor bank, control cabinet, dc charging unit, closing switch and cable system etc. employed with the system components are described. Especially the development of the inverse pinch switch enabled the generation of the very high current.

  • PDF

Metal Transfer Characteristics of Aluminium under Pulsed Current Metal Inert Gas Welding (알루미늄의 펄스 전류 미그 용접)

  • 최재호;최병도;김용석
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.127-133
    • /
    • 2002
  • In this study, metal transfer characteristics in pulsed current metal inert gas (MIG) welding of aluminum was investigated. Based on the metal transfer characteristics from direct current electrode negative MIG welding, the one drop per one pulse(ODOP) condition was predicted and compared with experimental data. The results indicated that experimental pulse range for the ODOP condition is wider than that predicted from the DCEP MIG welding data. In addition, more stable metal trnasfer behavior was obtained at the higher end of the ODOP condition.

Numerical Analysis of Through Transmission Pulsed Eddy Current Testing and Effects of Pulse Width Variation

  • Shin, Young-Kil;Choi, Dong-Myung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.255-261
    • /
    • 2007
  • By using numerical analysis methods, through transmission type pulsed eddy current (PEC) testing is modeled and PEC signal responses due to varying material conductivity, permeability, thickness, lift-off and pulse width are investigated. Results show that the peak amplitude of PEC signal gets reduced and the time to reach the peak amplitude is increased as the material conductivity, permeability, and specimen thickness increase. Also, they indicate that the pulse width needs to be shorter when evaluating the material conductivity and the plate thickness using the peak amplitude, and when the pulse width is long, the peak time is found to be more useful. Other results related to lift-off variation are reported as well.