• Title/Summary/Keyword: Pulsed UV

Search Result 107, Processing Time 0.022 seconds

Behavior of Natural Organic Matter(NOM), Chlorine Residual, and Disinfection By-Products(DBPs) Formation in Pulsed UV Treated Water (Pulsed UV 처리수에서의 자연유기물질, 잔류염소 및 소독부산물 생성 거동)

  • Sohn, Jinsik;Han, Jihee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.685-692
    • /
    • 2012
  • UV technology is widely used in water and wastewater treatment. Many researches have been conducted on microbial disinfection and micro pollutant reduction with UV treatment. However, the study on NOM with UV has limited because low/medium pressure UV lamp is not sufficient to affect refractory organics such as NOM. Pulsed UV treatment using UV flash lamp can be operated in the pulsed mode with much greater peak intensity. The pulse duration is typically in microseconds, whereas the interval between pulses is in the order of milliseconds. The high intensity of pulsed UV would mineralize NOM itself as well as change the characteristics of NOM. Chlorine demand and DBPs formation is affected on the changed amounts and properties of NOM. The objective of this study is to investigate the effect on NOM, chlorine residual, and chlorinated DBPs formation with pulsed UV treatment.

Behavior of Organic Matter, Chlorine Residual and Disinfection By-Products (DBPs) Formation during UV Treatment of Wastewater Treatment Plant Effluents (하수처리장 방류수의 UV 처리시 유기물질, 잔류염소 및 소독부산물 생성 거동)

  • Han, Jihee;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.61-72
    • /
    • 2014
  • Study on effluent organic matter (EfOM) characteristic and removal efficiency is required, because EfOM is important in regard to the stability of effluents reuse, quality issues of artificial recharge and water conservation of aqueous system. UV technology is widely used in wastewater treatment. Many reports have been conducted on microbial disinfection and micro pollutant reduction with UV treatment. However, the study on EfOM with UV has limited because low/medium pressure UV lamp is not sufficient to affect refractory organics. The high intensity of pulsed UV would mineralize EfOM itself as well as change the characteristics of EfOM. Chlorine demand and DBPs formation is affected on the changed amounts and properties of EfOM. The objective of this study is to investigate the effect on EfOM, chlorine residual, and chlorinated DBPs formation with low pressure and pulsed UV treatment. The removal of organic matter through low pressure UV treatment is insignificant effect. Pulsed UV treatment effectively removes/transforms EfOM. As a result, the chlorine consumption is changed and chlorine DBPs formation is decreased. However, excessive UV treatment caused problems of increasing chlorine consumption and generating unknown by-products.

Sterilization of Escherichia coli Based on Nd: YAG Resonator with a Pulsed Xenon Flashlamp

  • Kim, Hee-Je;Kim, Dong-Jo;Hong, Ji-Tae;Xu, Guo-Cheng;Lee, Dong-Gil
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.275-279
    • /
    • 2011
  • Sterilization of Escherichia coli (E. coli) is examined using a unique pulsed ultra-violet (UV) elliptical reactor based on Nd:YAG laser resonator, UV radiation from a pulsed xenon flashlamp. The light from the discharge has a broadband emission spectrum extending from the UV to the infrared region with a rich UV contained. Sterilization method by using the UV light is fast, environment-friendly and it does not cause secondary pollution. A Nd:YAG laser resonator having elliptical shape has advantage of concentrating the radiation of the UV light at two foci as the quart sleeve filled with E. coli. The primary objective of this research is to determine the important parameters such as pulse per second (pps), the applied voltage for sterilizing E. coli by using an UV elliptical reactor. From the experiment result, the sterilization effect of UV elliptical reactor is better than that of UV cylindrical reactor, and it can be 99.9% of sterilization at 800V regardless of the pps within 10 minutes.

A Study on Remediation of Chlorinated Hydrocarbons and Explosives using Pulsed-UV System (Pulsed-UV 시스템을 이용한 염소계 유기화합물 및 화약류 제거에 관한 연구)

  • Lee, Han-Uk;Han, Jonghun;Yoon, Yeomin;Lee, Jongyeol;Her, Namguk
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2013
  • This study was conducted in order to evaluate the removal process for long-term contamination sources including chlorinated hydrocarbons (TCE and PCE) and explosive compounds (TNT, RDX, and HMX) in underground water using a pulsed-UV system. Crystallized cells containing the contaminants were placed 10, 20, and 40 cm away from a lamp that emits pulsed-UV rays in order to examine how the removal efficiency is influenced by the distance between the source of the light and the compounds. Chlorinated hydrocarbons were completely removed in 30 minutes with a distance of 10 cm, while PCE was completely removed even with a distance of 20 cm. In the case of explosive compounds, removal efficiencies slightly varied depending on the compounds. The majority of the compounds were perfectly removed with a contact time of 10 minutes. In particular, for RDX, the results showed that complete removal was obtained within one minute, regardless of the distance from the UV source. The amount of light energy is in inverse proportion to the distance, and thus the energy reaching the compounds severely diminishes as the distance increases. Therefore, the removal efficiency decreased with increasing distance in the system.

Property Change of Solution by Pulsed Electric Field Treatment (펄스 전기장 처리에 의한 수용액의 물성 변화)

  • Choi, Seung-pil;Kim, Chan-Soo;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.63-69
    • /
    • 2011
  • The objective of this study is to investigate the change of physicochemical properties of humic acid, surfactants and water by pulsed electric field treatment. Critical micelle concentration(CMC) of surfactants and physicochemical properties of water were determined by the conductivity measurement, FT-IR and NMR, respectively. In electric field processing, structural changes of C-N complex and C=O were founded by FT-IR analysis. The increase of Hertz wave was in the range of 2.3 to 9.9 Hz in NMR analysis. CMC of cation and anion surfactant decreased to 1.3% and 9.2%, respectively, while the value of UV-vis increased. UV-vis of humic acid decreased by pulsed electric field. Therefore, application of pulsed electric field systeme was directly indicated to influence the physicochemical properties of water and organic compounds.

UV Emission Characterization of ZnO Thin Films Depending on the Variation of Oxygen Pressure (분위기 산소압변화에 따른 ZnO박막의 UV발광 특성분석)

  • Baek, Sang-Hyeok;Lee, Sang-Yeol;Jin, Beom-Jun;Im, Seong-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.103-106
    • /
    • 2000
  • ZnO is a wide-bandgap II-IV semiconductor and has a variety of potnetial applications. ZnO exhibits good piezoelectric, photoelectric and optical properties, and is a good candidate for an electroluminescence device. ZnO films have been deposited on (001) sapphire by PLD technique. Nd:YAG pulsed laser was operated at a wavelength of $\lambda=355nm$. The ZnO films were deposited at oxygen pressures from base to 500 mTorr. The substrate temperatures was increased from $200^{\circ}C\; to\;700^{\circ}C$ films showed strong UV emission by increasing the partial oxygen pressure. We have investigated the relationship between partial oxygen pressure and the intensity of UV emission.

  • PDF

Fine Flow Controlling Device for Medicine Injection (의료 약물주입용 미세 유량 제어 장치)

  • Cho, Su-Chan;Shin, Bo-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.51-55
    • /
    • 2021
  • The nurses manually carry out the intravenous therapy for the patients. Using an Arduino, the fine flow controlling device was invented to provide an ongoing patient care. The medication is injected through a peristaltic pump, and the amount of the solution is controlled with a RGB color sensor. The power of the device is supplied through the batteries. An amount of the injection is measured with LIG strain sensor fabricated by 355nm UV pulsed laser. This system will provide a better medical service.

Ultraviolet and green emission property of ZnO thin film grown at various ambient pressure (분위기 산소압 변화에 따른 ZnO 박막의 발광특성 변화)

  • 강정석;심은섭;강홍성;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.355-357
    • /
    • 2001
  • ZnO thin films were deposited on (001) sapphire substrate at various ambient gas pressure by pulsed laser deposition(PLD). Oxygen was used as ambient gas, and oxygen gas pressure was varied from 1.0${\times}$10$\^$-6/ Torr to 500 mTorr during the film deposition. As oxygen gas pressure increase in the region below critical pressure photoluminescence(PL) intensity in UV and green region increase. As oxygen gas pressure increase in the region above critical pressure photoluminescence(PL) intensity in UV and green region decrease. Each of critical ambient gas Pressures was 350 mTorr for UV emission and 200 mTorr for green emission.

  • PDF

A Study on Laser Ablation of Copper Thin Foil by 355nm UV Laser Processing (355nm UV 레이저를 이용한 구리 박판 가공 시 어블레이션에 관한 연구)

  • Oh, Jae-Yong;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.134-139
    • /
    • 2007
  • Usually nanosecond pulsed laser processing of metal is mainly affected by the thermal ablation. Many studies of the theoretical analysis and modeling to predict the laser ablation of metal are suggested on the basis of the photothermal mechanism at higher laser fluence. In this paper, we investigate the etching depth and laser fluence of laser ablation of copper foils and propose the simplified SSB Model(Srinivasan-Smrtic-Babu model) to study the photothermal effect of nanosecond pulsed laser ablation. The experimental results show that the photothermal ablation of the 355nm DPSS $NdYVO_{4}$ laser is useful to process the copper thin foils.