• Title/Summary/Keyword: Pulsed Jet

Search Result 48, Processing Time 0.028 seconds

Supersonic Free Jet and Ab initio Studies of Electronic-Vibrational Structures of Fluorene

  • 부봉현;최영식;김택수;강성권;김재룡
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.341-344
    • /
    • 1995
  • Laser-induced fluorescence (LIF) excitation spectra were measured for fluorene (FR) cooled in pulsed supersonic expansions of He in the range 283.7-296.7 nm. Ab initio studies of FR have also been carried out for determining the electronic and vibrational structures by using the standard 3-21G basis sets. In the LIF excitation spectra of FR, highly resolved vibronic bands are observed having the band origin of 33,791 cm-1. The vibrational bands above the electronic origin were assigned on the basis of the well-characterized electronic vibrational bands reported previously and of normal modes of vibrations derived by our HF/3-21G calculations.

Laser-induced plasma emission spectra of halogens in the helium gas flow and pulsed jet (헬륨 가스 플로우와 가스 펄스 젯에서 할로겐족 원소들의 레이저유도 플라즈마 방출 스펙트럼)

  • Lee, Yonghoon;Choi, Daewoong;Gong, Yongdeuk;Nam, Sang-Ho;Nah, Changwoon
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.235-244
    • /
    • 2013
  • Detection of halogens using laser-induced breakdown spectroscopy (LIBS) in open air is very difficult since their strong atomic emission lines are located in VUV region. In NIR region, there are other emission lines of halogens through electronic transitions between excited states. However, these lines undergo Stark broadening severely. We report the observation of the emission lines of halogens in laser-induced plasma (LIP) spectra in NIR region using a helium gas flow. Particularly, the emission lines of iodine at 804.374 and 905.833 nm from LIPs have been observed for the first time. In the helium ambient gas, Stark broadening of the emission lines and background continuum emission could be suppressed significantly. Variations of the line intensity, plasma temperature, and electron density with the helium flow rate was investigated. Detection of chlorine and bromine in flame retardant of rubbers was demonstrated using this method. Finally, we suggest a pulsed helium gas jet as a practical and ecomonical helium gas source for the LIBS analysis of halogens in open air.

An Experimental Study on the Trajectory Characteristics of Liquid Jet with Canted Injection Angles in Crossflow (수직분사제트에서 다양한 분사각도의 분무궤적 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-47
    • /
    • 2008
  • The liquid column and spray trajectory have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle were varied to provide of jet operation conditions. The Pulsed Shadowgraph Photography and Planar Liquid Laser Induced Fluorescence technique was used to determine the injection characteristics in a subsonic crossflow of air. And the mainly objectives of this research was to get a empirical formula of liquid column and spray region trajectory with forward and reversed injection of air stream. As the result, This research has been shown that each trajectories were spatially dependent on air-stream velocity, fuel injection velocity, various injection angle, and normalized injector exit diameter. Furthermore, the empirical formula of liquid column trajectories has been some different of drag coefficient results between forward and reversed angled injection.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (아음속 수직분사제트에서 액적크기 특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Hwang, Yong-Seok;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.115-122
    • /
    • 2007
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomize. internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD (Sauter Mean Diameters) distribution by using Planar Liquid Laser Induced Fluorescence technique. The objectives of this research are get a droplet distributions and drop size measurements of each condition and compare with the other flow effects. As the result, This research has been showned that droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects, and normalized distance from the injector exit length(x/d, y/d). There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Variation of Nutrient Broth Droplets Patterned by Electrospray System with Flow Rates (정전분무를 이용한 패턴화된 생물현탁액 액적의 유량에 따른 변화 연구)

  • Jeong, Sang Bin;Jang, Kyung Soo;Lee, Gunwoong;Chong, Euiseok;Heo, Ki Joon;Lee, Byung Uk
    • Particle and aerosol research
    • /
    • v.11 no.4
    • /
    • pp.115-118
    • /
    • 2015
  • An electrospray patterning method has been considered as a new and effective way for controlling very fine droplets. Drop-on-demand patterning for unstained nutrient broth on wafers was newly conducted with an electrospray pulsed jet. The patterns had been made under varying experimental conditions including flow rate, vibration frequency, and translational speed of the electrospray patterning system. In this experiment, especially, variation of nutrient broth droplet was measured under varying flow rate conditions. This new technique has a potential to be applied in biology experiments and hormone medical industry.

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

Thermomechanical Effect on the Water Wet Dental Hard Tissue by the Q-switched Er : YAG Laser

  • Y. H. Kwon;Ky0-han Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.231-236
    • /
    • 1999
  • Understanding the exgenous water induced thermomechanical effect on the dental hard tissue by the Q-switched Er:YAG laser (1-$mutextrm{s}$-long pulse width) has an important impact on the further understanding of the free-running Er:YAG laser (250-$mutextrm{s}$-long pulse width) ablation on the dental gard tissue because one macroscopic effect in the free-running laser is an accumulation of microscopic effects we investigated in this study. The Q-switched Er:YAG laser with exogenous water on the tooth enhanced ablation rate compared to the case of no water on the tooth. The frequency of exogenous-water jet on the tooth has affected the ablation rate in such a way that as we dispensed water drops less frequently we could get more enhanced ablation rate. The amplitude of the recoil pressure depends on the tooth surface conditions such that as surfaces wet, and as the volume of the exogenous water drop increased, the amplitude of the recoil pressure increased also. From this study we realized that the 1 $mutextrm{s}$ long pulsed induced thermomechanical effect provides us useful information for the understanding of the free-running Er:YAG laser induced ablation with exogenous water.

  • PDF

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.