DOI QR코드

DOI QR Code

Laser-induced plasma emission spectra of halogens in the helium gas flow and pulsed jet

헬륨 가스 플로우와 가스 펄스 젯에서 할로겐족 원소들의 레이저유도 플라즈마 방출 스펙트럼

  • Lee, Yonghoon (Department of Chemistry, Mokpo National University) ;
  • Choi, Daewoong (Department of Chemistry, Mokpo National University) ;
  • Gong, Yongdeuk (Department of Chemistry, Mokpo National University) ;
  • Nam, Sang-Ho (Department of Chemistry, Mokpo National University) ;
  • Nah, Changwoon (Department of Polymer-Nano Science and Technology, Chonbuk National University)
  • Received : 2013.04.17
  • Accepted : 2013.07.29
  • Published : 2013.08.25

Abstract

Detection of halogens using laser-induced breakdown spectroscopy (LIBS) in open air is very difficult since their strong atomic emission lines are located in VUV region. In NIR region, there are other emission lines of halogens through electronic transitions between excited states. However, these lines undergo Stark broadening severely. We report the observation of the emission lines of halogens in laser-induced plasma (LIP) spectra in NIR region using a helium gas flow. Particularly, the emission lines of iodine at 804.374 and 905.833 nm from LIPs have been observed for the first time. In the helium ambient gas, Stark broadening of the emission lines and background continuum emission could be suppressed significantly. Variations of the line intensity, plasma temperature, and electron density with the helium flow rate was investigated. Detection of chlorine and bromine in flame retardant of rubbers was demonstrated using this method. Finally, we suggest a pulsed helium gas jet as a practical and ecomonical helium gas source for the LIBS analysis of halogens in open air.

할로겐족 원소들의 강한 원자 방출선들은 진공자외선 영역에 존재하여, 공기 중에서 레이저 펄스를 시료에 집속하여 플라즈마 방출 스펙트럼을 얻어 원소 분석을 수행하기 매우 어렵다. 또한 근적외선 영역에 할로겐족 원소들의 들뜬 전자 상태들 사이의 전이에 의한 원자 방출선들이 존재하는데, 이들은 스타크 효과에 의한 선폭 넓어짐 현상이 매우 커서, 공기 중에서 원소 분석에 충분한 신호 대 잡음비를 얻기 어렵다. 헬륨 가스 플로우를 이용하여 근적외선 영역의 할로겐족 원소들의 원자 방출선들은 레이저유도 플라즈마로부터 관측하였다. 특히, 804.374 nm와 905.833 nm의 아이오딘 원자 방출선들은 레이저유도 플라즈마에서 처음으로 관찰된 것이다. 헬륨 분위기에서 스타크 효과에 의한 선폭 넓어짐 현상과 연속 배경복사의 세기는 현저히 억제되었다. 헬륨 가스 플로우의 유량에 따른 원자 방출선의 세기, 플라즈마 온도, 전자 밀도의 변화를 조사하였다. 이 방법을 이용하여 고무의 난연제 성분에 포함된 염소와 불소를 레이저유도 플라즈마 분광법을 이용하여 검출하였다. 마지막으로 레이저유도 플라즈마 분광법을 이용하여 할로젠 원소들을 검출하는데 헬륨 가스 소모량을 줄일 수 있는 가스 펄스 젯 장치를 제안한다.

Keywords

References

  1. J. P. Singh and S. N. Thakur, 'Laser-Induced Breakdown Spectroscopy', 1st Ed., Elsevier Science B. V., Amsterdam (2007).
  2. A. W. Miziolek, V. Palleschi and I. Schechter, 'Laser- Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications', 1st Ed., p11, Cambridge University Press, Cambridge (2006).
  3. H. R. Griem, 'Spectral Line Broadening by Plasmas', 1st Ed., Academic Press, London (1974).
  4. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin and A. M. Popov, Spectrochim. Acta Part B, 65, 642-657 (2010). https://doi.org/10.1016/j.sab.2010.04.009
  5. Y. Iida, Spectrochim Acta Part B, 45, 1353-1367 (1990). https://doi.org/10.1016/0584-8547(90)80188-O
  6. W. Sdorra and K. Niemax, Mikrochim. Acta, 107, 319-327 (1992). https://doi.org/10.1007/BF01244487
  7. J. A. Aguilera and C. Aragon, Appl. Phys. A, 69, S475-S478 (1999). https://doi.org/10.1007/s003390051443
  8. S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori and C. P. G. Vallabhan, Appl. Phys. Lett., 72, 167-169 (1998). https://doi.org/10.1063/1.120602
  9. S. Nakamura and K. Wagatsuma, Spectrochim. Actra Part B, 62, 1303-1310 (2007). https://doi.org/10.1016/j.sab.2007.10.008
  10. J. G. Son, S.-C. Choi, M.-K. Oh, H. Kang, H. Suk and Y. Lee, Appl. Spectrosc., 64, 1289-1297 (2010). https://doi.org/10.1366/000370210793334963
  11. J. Scaffidi, S. M. Angel and D. A. Cremers, Anal. Chem., 78, 25-32 (2006).
  12. V. I. Babushok, F. C. DeLucia Jr., J. L. Gottfried, C. A. Munson and A. W. Miziolek, Spectrochim. Acta Part B, 61, 999-1014 (2006). https://doi.org/10.1016/j.sab.2006.09.003
  13. S.-C. Choi, M.-K. Oh, Y. Lee, S. Nam, D.-K. Ko and J. Lee, Spectrochim. Acta Part B, 64, 427-435 (2009). https://doi.org/10.1016/j.sab.2009.05.008
  14. G. Asimellis, S. Hamilton, A. Giannoudakos and M. Kompitsas, Spectrochim. Acta Part B, 60, 1132-1139 (2005). https://doi.org/10.1016/j.sab.2005.05.035
  15. L. St-Onge, E. Kwong, M. Sabsabi and E. B. Vadas, Spectrochim. Acta Part B, 57, 1131-1140 (2002). https://doi.org/10.1016/S0584-8547(02)00062-9
  16. M. Tran, Q. Sun, B. W. Smith and J. D. Winefordner, Appl. Spectrosc., 55, 739-744 (2001). https://doi.org/10.1366/0003702011952433
  17. Y. Lee, S.-W. Oh and S.-H. Han, Appl. Spectrosc., 66, 1385-1396 (2012). https://doi.org/10.1366/12-06639R
  18. M. M. Tan, S. Cui, J. Yoo, S.-H. Han, K.-S. Ham, S.-H. Nam and Y. Lee, Appl. Spectrosc., 66, 262-271 (2012). https://doi.org/10.1366/11-06379
  19. L. Dudragne, Ph. Adam and J. Amouroux, Appl. Spectrosc., 52, 1321-1327 (1998). https://doi.org/10.1366/0003702981942654
  20. http://www.nist.gov/pml/data/asd.cfm, Accessed 17 Apr 2013.
  21. A. W. Miziolek, V. Palleschi and I. Schechter, 'Laser- Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications', 1st Ed., p130, Cambridge University Press, Cambridge (2006).
  22. M. L. Najarian and R. C. Chinni, J. Chem. Edu., 90, 244-247 (2013). https://doi.org/10.1021/ed3003385
  23. L. St-Onge, R. Sing, S. Bechard and M. Sabsabi, Appl. Phys. A, 69, S913-S916 (1999). https://doi.org/10.1007/PL00006964
  24. S. Gregoire, V. Motto-Ros, Q. L. Ma, W. Q. Lei, X. C. Wang, F. Pelascini, F. Surma, V. Detalle and J. Yu, Spectrochim. Acta Part B, 74, 31-37 (2012).

Cited by

  1. Effects of thermal aging on degradation mechanism of flame retardant-filled ethylene-propylene-diene termonomer compounds vol.132, pp.4, 2015, https://doi.org/10.1002/app.41324