• Title/Summary/Keyword: Pulsed Jet

Search Result 48, Processing Time 0.028 seconds

Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems (발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.

Precise Correction Method of the Copper Emission Spectra obtained from the Pulsed Plasma Jet

  • Kim, Jong-Uk;Son, Sung-Min;Ko, Dong-Seob;Seungmook Oh
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.104-105
    • /
    • 2001
  • Recently, plasma injection has been suggested as a means to enhance and control combustion rates of propellant materials. It is also of interest for applications in fields such as rocket propulsion, electrothermal-chemical (ETC) launchers, and hypersonic mass acceleration technology. In order to characterize the plasma fundamental measurements such as the plasma excitation temperature and electron number density are essential. (omitted)

  • PDF

Spray Structure and Cross-section Characteristics of Pulsed Liquid Jet Injected into a Cross-flow (횡단 유동장으로 펄스 분사된 액체 제트의 분무 구조 및 단면 분포 특성)

  • Lee, In-Chul;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • Present studies of these experiments was conducted to using water, over a range of cross-flow velocities from 42 to 136 m/s, with injection frequencies from 35.7 to 166.2 Hz. In cross-flow field, main parameters of liquid jet for secondary breakup were cross-flow drag rather than pressure pulse frequency. As oscillation of the periodic pressure, liquid jet was moved up and down. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increasing.

Limit of equivalence ratio on mixing enhancement in rich flames. (과농 예혼합화염의 혼합촉진에 대한 당량비 한계)

  • Kim, Jin-Kook;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1996
  • An experimental investigation has been made with the objective of studying the limits of equivalence ratio on mixing enhancement in a tone excited jet flame. The jet is pulsed by means of a loudspeaker-driven cavity and rich flames(${\phi}>1.5$) are used. The excitation frequency is chosen for the resonant frequency identified as a pipe resonance due to acoustic excitation. Methane, propane and butane are used to examine the effect of mixture property on the limit of equivalence ratio. Mixing is always enhanced in a methane/air flame as the excitation intensity increases. Constant lower limits of equivalence ratio for mixing enhancement are present in cases of propane/air and butane/air flames irrespective of mean mixture velocities. The equivalence ratio limits are also found to be related to the flame instability ; the lower Le, the higher the limit of equivalence ratio. Under the equivalence ratio limits, cellular flames are generated as the excitation intensity increases. The amplitude of oscillating velocity for generating a cellular flame in the equivalence ratio limit is proportional to a mean mixture velocity irrespective of fuels.

  • PDF

A Fosmid Cloning Strategy for Detecting the Widest Possible Spectrum of Microbes from the International Space Station Drinking Water System

  • Choi, Sangdun;Chang, Mi Sook;Stuecker, Tara;Chung, Christine;Newcombe, David A.;Venkateswaran, Kasthuri
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.249-255
    • /
    • 2012
  • In this study, fosmid cloning strategies were used to assess the microbial populations in water from the International Space Station (ISS) drinking water system (henceforth referred to as Prebiocide and Tank A water samples). The goals of this study were: to compare the sensitivity of the fosmid cloning strategy with that of traditional culture-based and 16S rRNA-based approaches and to detect the widest possible spectrum of microbial populations during the water purification process. Initially, microbes could not be cultivated, and conventional PCR failed to amplify 16S rDNA fragments from these low biomass samples. Therefore, randomly primed rolling-circle amplification was used to amplify any DNA that might be present in the samples, followed by size selection by using pulsed-field gel electrophoresis. The amplified high-molecular- weight DNA from both samples was cloned into fosmid vectors. Several hundred clones were randomly selected for sequencing, followed by Blastn/Blastx searches. Sequences encoding specific genes from Burkholderia, a species abundant in the soil and groundwater, were found in both samples. Bradyrhizobium and Mesorhizobium, which belong to rhizobia, a large community of nitrogen fixers often found in association with plant roots, were present in the Prebiocide samples. Ralstonia, which is prevalent in soils with a high heavy metal content, was detected in the Tank A samples. The detection of many unidentified sequences suggests the presence of potentially novel microbial fingerprints. The bacterial diversity detected in this pilot study using a fosmid vector approach was higher than that detected by conventional 16S rRNA gene sequencing.

Spectra of Optical-field Ionized Gases by a Femtosecond Ti:Sapphire Laser

  • Mock, Tomas;Shin, Hyun-Joon;Cha, Yong-Ho;Lee, Dong-Gun;Hong, Kyung-Han;Nam, Chang-Hee
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.50-53
    • /
    • 1998
  • We report on the spectroscopic investigation of optical-field ionized plasmas in the soft X-ray spectral region. The experiment was carried out by focusing pulses of the high-power Ti:Sapphire laser with an energy of ~ 40 mJ and time duration of ~30 fs into a gas jet of krypton, xenon, and argon from a pulsed nozzle. Strong soft X-ray emission on lines from ionic stages of $Kr^{7+} , Kr^{8+} , Xe^{7+} , Ar^{7+} , and Ar^{8+}$ is reported. The experimental result was found to be in good agreement with theoretical prediction.

Spray Angle and Break-up Characteristics of Supersonic Liquid Jets by an Impinging Methods with High Speed Projectile (초고속 발사체의 액체 저장부 충돌에 의한 초음속 액체 제트의 분무 속도 및 분열 특성)

  • Lee, In-Chul;Shin, Jeung-Hwan;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • Pulsed supersonic liquid jets injected into an ambient air are empirically studied by using a high pressure ballistic range system. Ballistic range systems which are configured with high-pressure tube, pump tube, launch tube and liquid storage nozzle. Experimental studies are conducted to use with various impact nozzle geometry. Supersonic liquid jets are generated by an impact of high speed of the projectile. High speed liquid jets are injected with M = 3.2 which pressure is 1.19 GPa. Multiple jets which accompany with shock wave and pressure wave in front of the jet were observed. The shock-wave affects significantly atomization process for each spray droplets. As decreasing orifice diameter, the averaged SMD of spray jets had the decreasing tendency.

WATER INDUCED MECHANICAL EFFECT ON THE DENTAL HARD TISSUE BY THE SHORT PULSED LASER

  • Kwon,Yong-Hoon;Kim, You-Young
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 1998
  • One macroscopic effect in the free-running Er:YAG laser is an accumulation of microscopic effects. Understanding of the exogenous water induced mechanical effect on the dental hard tissue by the Qswitched Er:YAG laser has an important impact on the further understanding of the free-running Er:YAG laser ablation on the dental hard tissue. The Q-switched Er:YAG laser (1-$\mu$s-long pulse width) was used in the recoil pressure measurement with an aid of water-jet system and a pressure transducer. The amplitude of the recoil pressure depends on the tooth surface conditions (dry and wet) and the volume of the water upon it. Wet surfaces yielded higher recoil pressure than that of dry, surface, and as the volume of the exogenous water drop increased, the amplitude of the recoil pressure increased also.

  • PDF

Keyhole-structure and Stability in Laser-beam Penetration Into an Absorbing Liquid (Water) (레이저 빔의 흡수 액체 내 침투에 의해 생성된 키홀 구조와 안정성)

  • 김동식;장덕석
    • Laser Solutions
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2001
  • When a high-power laser beam is irradiated on the surface of material, it is well known that a cavity, called a keyhole induced by the pressure action of the vapor plume, is generated in the molten material. This paper describes the interaction between a pulsed CO$_2$ laser beam and water. The laser-beam is used to generate and maintain a conical depression in the water surface similar to the keyhole created during laser penetration welding. Experimental results show that the depth of laser-beam penetration is limited by hydrodynamic instability. The instability of the surface cavity can be understood by the capillary instability of a hollow jet. Theoretical computation of the steady keyhole shape has been performed. modifying the model suggested by Andrews et al. (1976). The model predicts the qualitative behavior of the keyhole but significantly underestimates the average diameter.

  • PDF

Analysis of Spray Characteristic for 3-Component Mixed Fuel (3 성분 혼합연료의 분무특성 해명)

  • Myong, Kwang-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.589-595
    • /
    • 2009
  • The instability wave formed near nozzle region grows to vortex with large scale in downstream region of spray. It plays an important role in the fuel-air mixing, combustion process and engine exhaust emissions in direct injection diesel engine. The objective of this study is to analyze effect of variant parameters (injection pressure, ambient gas density, etc.) and fuel properties on spray instability near nozzle region. Spray structure near nozzle region was investigated using a magnification photograph. A pulsed Nd-YAG laser was used as a light source, and image was taken by CCD camera. The following conclusions are drawn from this experimental analysis. In low ambient density, the effect of fuel properties on spray instability near nozzle region is dominant. In high ambient density, the effect of ambient gas on spray instability near nozzle region is dominant. High jet velocity has strong influence on spray instability.