• 제목/요약/키워드: Pulse-transformer

검색결과 260건 처리시간 0.023초

Cascading 방식을 적용한 펄스발생기의 펄스전압 변성 및 Cascading 비율 특성 (A Study on the Pulse Peak Voltage and Cascading Ratio of Compact Pulse Generator using Cascading Method)

  • 정종한;김희제
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권7호
    • /
    • pp.329-333
    • /
    • 2001
  • The pulsed poser system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNox/DeSOx power system, ozon generator, etc. A pulse energy efficiency for load depends on the rising time, peak value, pulse duration and impedance matching, etc. The pulse generator generally required for short pusle duration and high peak value was forced to consider its volume and economy. In this study, developing a compact pulse generator that applied for cascading method to be made of two pulse transformers, we compared cascading voltage with non cascading one by applying the pulse energy to load. Adopting cascading technique to pulse transformer, we found that average cascading voltage was about 60[%] of theoretical value. Maximum cascading ratio was calculated at 60 times compared with non cascading voltage.

  • PDF

개방-델타 단권선 변압기를 이용한 새로운 다중 펄스 정류기 시스템 (New Multi-pulse Rectifier Systems Using An Open-Delta Auto-Connected Transformer)

  • 강문식;우병옥
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.278-285
    • /
    • 1999
  • This paper proposes new 12 and 24-pulse rectifier systems using an open-delta auto-connected transformer. This approach employs two static converters to operate it at higher than utility line frequencies and to provide multi-pulse operation. By operating magnetic components at a higher frequency, higher power density can be achieved. A unique feature of the proposed approach is that the magnetic components for the dc-side are also exposed to a higher frequency and these components too are reduced in size. The switching frequency and its harmonic components are absent in the utility input line current. The VA ratings of the transformer and static converter are 0.236/0.292 [pu] and 0.11/0.18 [pu] in 12 and 24-pulse rectifier system, respectively. A finer grade of steel or alternatives can be deployed to increase performance and reduce size further. Analysis, simulations, simulations, design example, and experimental results for a 480[V], 10{kVA] prototype system are presented.

  • PDF

초음파 측정에 의한 변압기내 부분방전 위치측정 (Location of Partial Discharge in Oil Transformer by means of Ultrasonic measurement)

  • 곽희로;전희종;김재철;황선주;윤용한;권태원;윤용범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.415-418
    • /
    • 1991
  • This paper described an instrument for the detection and geometric location of partial discharge(PD) sources in oil transformer. This instrument measures electric current pulse and ultrasonic pulse simultaneously in order to determine the geometric location of PD in transformer. Laboratory experiment systems are made for detection and location of PD in oil transformer. It was observed that there are effects of the barrier, such as insulation papers, silicon steel plate and actual transformer with location and detection of PD in model transformer. Through the laboratory actual test, it was clarified that this measurement device could be used satisfactorily for location of pd in oil transformer.

  • PDF

고전압 펄스 발생 장치의 관한 부하의 변화를 고려한 펄스회로의 이론적 연구 (Theoretical Study of Pulse Circuits with the Load Variation for Device of the High Voltage Pulse Generator)

  • 김영주;방상석;이채한;김상현
    • 조명전기설비학회논문지
    • /
    • 제30권3호
    • /
    • pp.106-112
    • /
    • 2016
  • The high-voltage pulse generator consists of transformers of fundamental wave and harmonic waves, and shunt capacitors. The pulse has the fundamental wave and the harmonic waves that have been as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed by using transformer equivalent circuits with the effect of load and simulated in time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 2.0kV. In high voltage circuit, capacitors are related to frequency band pass characteristics. Also, it is shown that the voltage of output pulse increases according to the growth of load.

펄스파워전원용 고전압 펄스변압기 (High voltage Pulse Transformer for Pulsed Power Supply)

  • 김종해;구치욱;최영욱;이홍식;임근희;고광철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1755-1757
    • /
    • 1998
  • Pulse transformers have been developed to apply for pulsed power technology as an alternative of a Marx generator. To obtain repetitive pulsed power generation, it is necessary to observe the rising time of output of pulse transformer. In this paper, using the equivalent circuit, The rising wave of output of pulse transformer is simulated for various input wave by using the Electromagnetic transient program(EMTP).

  • PDF

A Flyback Transformer linked Soft Switching PWM DC-DC Power Converter using Trapped Energy Recovery Passive Quasi-Resonant Snubbers with an Auxiliary Three-Winding Transformer

  • Ahmed Tarek;Chandhaket Srawouth;Nakaoka Mutsuo;Jung Song Hwa;Lee Hyun-Woo
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.237-245
    • /
    • 2004
  • In this paper, a two-switch high frequency flyback transformer linked zero voltage soft switching PWM DC-DC power converter implemented for distributed DC- feeding power conditioning supplies is proposed and discussed. This switch mode power converter circuit is mainly based on two main active power semiconductor switches and a main flyback high frequency transformer linked DC-DC converter in which, two passive lossless quasi-resonant snubbers with pulse current regeneration loops for energy recovery to the DC supply voltages composed of a three winding auxiliary high frequency pulse transformer, auxiliary capacitors and auxiliary diodes for inductive energy recovery discharge blocking due to snubber capacitors are introduced to achieve zero voltage soft switching from light to full load conditions. It is clarified that the passive resonant snubber-assisted soft switching PWM DC-DC power converter has some advantages such as simple circuit configuration, low cost, simple control scheme, high efficiency and lowered noises due to the soft switching commutation. Its operating principle is also described using each mode equivalent circuit. To determine the optimum resonant snubber circuit parameters, some practical design considerations are discussed and evaluated in this paper. Moreover, through experimentation the practical effectiveness of the proposed soft switching PWM DC-DC power converter using IGBTs is evaluated and compared with a hard switching PWM DC-DC power converter.

소형트랜스의 Cascading 방식을 적용한 임펄스 출력특성 (The Impulse Output Characteristics using Cascading Method of Compact Transformer)

  • 정종한;김휘영;홍정환;박구렬;김희제;조정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1865-1867
    • /
    • 2000
  • The pulse power system has been widely used to many applications. such as E/P(Electrostatic Precipitator), DeNOx/DeSOx power system, ozon generator. etc. A pulse energy efficiency for load depend on the rising time, peak value, pulse duration, impedance matching. etc. The pulse generator generally required for short pulse duration, high peak value was forced to consider its size and economy. In this study, developing a compact pulse generator that applied for Cascading method to be made of two pulse transformer, we compared cascading voltage with no cascading one by applying the pulse energy to load.

  • PDF

Step-up and Step-down Asymmetrical 24-Pulse Autotransformer Rectifier

  • Zhang, Lu;Ge, Hong-juan;Jiang, Fan;Yang, Guang;Lin, Yi
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1536-1544
    • /
    • 2018
  • The existing 24-pulse autotransformer rectifier unit (ATRU) needs interphase reactors for parallel work of the rectifier bridges, and its output voltage cannot be regulated. Aiming at these problems, a step-up and step-down asymmetrical 24-pulse ATRU is proposed in this paper. The connections and turns ratios among transformer windings are well designed. In addition, a 15-degree phase difference is formed between two of the 24 voltage vectors produced by the transformer, which makes the four rectifier bridge groups produce a 24-pulse DC voltage without interphase reactors. Meanwhile, by adding extended winding to each phase of the transformer, wide-range regulation of the ATRU output voltage can be realized, and the reasonable voltage regulation range is between 0.2 and 1.6. The superposition of the voltage vectors and the principle of the voltage regulation are analyzed in detail. Furthermore, the turns ratio of the windings, winding current, output voltage, and kilovolt-ampere rating are all derived. Finally, the simulations and experiments are carried out, and the correctness of the principle and theoretical analysis of the new 24-pulse ATRU are verified.

Utililty-Interfaced High-Frequency Flyback Transformer Linked Sinewave Pulse Modulated Inverter for a Small Scale Renewable Energy Conditioner

  • Chandhaket, Srawouth;Koninish, Yoshihiro;Nakaoka, Mutsou
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.112-123
    • /
    • 2002
  • This paper presents a novel prototype of the utility AC power interfaced soft-switching sinewave pulse modulated inverter using the high-frequency flyback for the small scale distributed renewable energy power conditioner. The proposed cricuit with a high-frequency isolation link has a funtion of electrical isolation, which is more cost-effective and reliable for the small-scale distributed renwal energy utilization system from a safety point of riew. The discontinuous conduction mode(DCM) operation of the high-frequency flyback transformer is adopted to establish a simple and low-cost circuit configuration and control scheme. For the simplicity, the circuit operating principle is described on the basis of the modified conventional full bridge inverter, whitch is the typical conventional high-frequency full-bridge inverter employing the high requency flyback transformer to eanble the effictive function of the electrical isolation. Than, the new circuit topology of the unility-interfaced soft-switching sinewave pulse modulated inverter using IGBTs is proposed. The proposed cricuit topology is additionally composed of the auxiliary power regenerating snubber cricuits, which are also mathematically analyzed for the parameter desigen settings. Finally, the performance of the propose inverter is evaluated on the basis of computer-aid simulation. It is noted that the sinewave pulse modulated output current of the inverter is synchronous to the AC main voltage.

Analysis of a Harmonics Neutralized 48-Pulse STATCOM with GTO Based Voltage Source Converters

  • Singh, Bhim;Saha, Radheshyam
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.391-400
    • /
    • 2008
  • Multi-pulse topology of converters using elementary six-pulse GTO - VSC (gate turn off based voltage source converter) operated under fundamental frequency switching (FFS) control is widely adopted in high power rating static synchronous compensators (STATCOM). Practically, a 48-pulse ($6{\times}8$ pulse) configuration is used with the phase angle control algorithm employing proportional and integral (PI) control methodology. These kinds of controllers, for example the ${\pm}80MVAR$ compensator at Inuyama switching station, KEPCO, Japan, employs two stages of magnetics viz. intermediate transformers (as many as VSCs) and a main coupling transformer to minimize harmonics distortion in the line and to achieve a desired operational efficiency. The magnetic circuit needs altogether nine transformers of which eight are phase shifting transformers (PST) used in the intermediate stage, each rating equal to or more than one eighth of the compensator rating, and the other one is the main coupling transformer having a power rating equal to that of the compensator. In this paper, a two-level 48-pulse ${\pm}100MVAR$ STATCOM is proposed where eight, six-pulse GTO-VSC are employed and magnetics is simplified to single-stage using four transformers of which three are PSTs and the other is a normal transformer. Thus, it reduces the magnetics to half of the value needed in the commercially available compensator. By adopting the simple PI-controllers, the model is simulated in a MATLAB environment by SimPowerSystems toolbox for voltage regulation in the transmission system. The simulation results show that the THD levels in line voltage and current are well below the limiting values specified in the IEEE Std 519-1992 for harmonic control in electrical power systems. The controller performance is observed reasonably well during capacitive and inductive modes of operation.