• Title/Summary/Keyword: Pulse-on Time

Search Result 1,715, Processing Time 0.033 seconds

Compact Pulse Generator Using a Rotating Disk with Sparking Holes (회전공판형 컴펙트 펄스 발생장치)

  • Lee, Jong-Hoon;Kwon, Nam-Yeol;Lee, Seung-Hoon;Shin, Jung-Min;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1870-1872
    • /
    • 2003
  • High voltage pulse generator with fast rise time has been studied theoretically and experimentally. The complexity and stray inductance of a pulse generator components can be very difficult to reduce. As a result, a compact size and stable Pulse can be obtained by using a rotary air-hole. Parametric studies showed that the rise time of the output pulse was depended little on the change of the revolutions per minute(RPM) while the pulse width of the output pulse was depended greatly upon the change of the revolutions per minute (RPM).

  • PDF

The Analysis on the Reliability of Measuring Pulse-Respiration Ratio (맥솔(脈率) 측정방법(測定方法)의 신뢰도(信賴度) 분석(分析))

  • Kim, Dong-Hoon;Yang, Dong-Hoon;Huh, Woong;Park, Young-Jae;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.9 no.2
    • /
    • pp.123-144
    • /
    • 2005
  • Objectives: Pulse-Respiration Ratio has been used for estimating subject's Han-Yeol [寒熱] status since it mentioned in suwen [素問]. In practicing Pulse-Respiration Ratio over 5 means the status of Yeol [熱], Pulse-Respiration Ratio below 3 means the status of Han [寒]. We performed this study to examine the Optimum Standard for Measuring Pulse-Respiration Ratio on the Basis of Repeatability and Reproducibility. Methods: After subject's 5 minutes rest we measured subject's ECG, respiration pattern, EEG, EMG simultaneously. In this research examiner's number is two, subject's number is four, and the number of repeat is two. We calculated Pulse-Respiration Ratio through dividing Respiration cycle average by Pulse cycle average according to each standard including time section, $EEG(relative-{\alpha}$ density, $relative-{\beta}$ density, ${\alpha}/{\beta}$ and EMG. We analyzed these data through Gage R&R study using MINITAB 13.20 program and considered the results of below 30 %R&R and over 4 Number of Distinct Categories to have a significance. Results: 1. In the applying of time standard, Pulse-Respiration Ratio from section 3, 4, 6, 8 had a significant meaning in the aspect of Repeatability and Reproducibility. 2. In the applying of $EEG({\alpha}$ I , ${\beta}$ I , ${\alpha}/{\beta})$, EMG(E I) standard, there was no significant results. 3. In the applying of time standard(section 5, 6, 7), $EEG({\alpha}$ I , ${\beta}$ I , ${\alpha}/{\beta})$ and EMG(E I) standard simultaneously, Pulse-Respiration Ratio from ${\alpha}/{\beta}$ in section 6, ${\beta}$ I in section 8 had a significant meaning in the aspect of Repeatability and Reproducibility. Conclusions: We can suggest the Optimum Standard for Measuring Pulse-Respiration Ratio on the basis of Repeatability and Reproducibility as followings; 1. Pulse-Respiration Ratio Measuring time should be at least 15 minutes. 2. Applying of time(section 6, 8) and $EEG({\beta}$ I, ${\alpha}/{\beta})$ standard simultaneously is recommended considering reliability and validity but more study is needed. 3. EMG(E I) may be helpful to detect the segment of physical rest and exclude artifacts but more study is needed.

  • PDF

A study on Intention Pulse Forming Network Generation of Pulse Nd:YAG Laser adopting Multi -Alienation Discharge (다중분할 방전방식을 적용한 펄스형 Nd:YAG 레이저의 임의 펄스성형 연구)

  • Whi-Young Kim
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.7
    • /
    • pp.975-982
    • /
    • 2001
  • In this study, a solid-state laser system adopting a new real time multi-discharge (RTMD) method in which three flashlamps are turned on consecutively was designed and fabricated to examine the pulse width and the pulse shape of the laser beams depending upon the changes in the lamp rum-on time. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on three flashlamps consecutively on a real-time basis with the aid of a PIC one-chip microprocessor. With this technique, the lamp turn-on delay time can be varied more diversely from 0 to 10 ms and the real-time control is possible with an external keyboard, enabling various pulse shapes. In addition, longer pulses can be more widely used for industrial processing and lots of medical purposes

  • PDF

A Study on the Pulse Peak Voltage and Cascading Ratio of Compact Pulse Generator using Cascading Method (Cascading 방식을 적용한 펄스발생기의 펄스전압 변성 및 Cascading 비율 특성)

  • Joung, Jong-Han;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.329-333
    • /
    • 2001
  • The pulsed poser system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNox/DeSOx power system, ozon generator, etc. A pulse energy efficiency for load depends on the rising time, peak value, pulse duration and impedance matching, etc. The pulse generator generally required for short pusle duration and high peak value was forced to consider its volume and economy. In this study, developing a compact pulse generator that applied for cascading method to be made of two pulse transformers, we compared cascading voltage with non cascading one by applying the pulse energy to load. Adopting cascading technique to pulse transformer, we found that average cascading voltage was about 60[%] of theoretical value. Maximum cascading ratio was calculated at 60 times compared with non cascading voltage.

  • PDF

Time-Domain Numerical Investigation of Ring Resonator Optical Delay Devices

  • Chung, Youngchul
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.441-446
    • /
    • 2013
  • A split-step time-domain model for the analysis of pulse delay characteristics through ring resonator all-pass filters (APF's) is developed and its accuracy is checked. The dependence of the delay time and pulse distortion on the coupling ratios is investigated using the model. It is observed that the bandwidth of the APF's needs to be wide enough to minimize the pulse distortion.

A Cyclic CMOS Time-to-Digital Converter

  • Choi, Jin-Ho;Kim, Ji-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.112-115
    • /
    • 2007
  • A CMOS TDC(time-to-digital converter) is proposed which has a simple cyclic structure. The proposed TDC consists of pulse-shrinking elements, D latches and D flip-flops. The operation is based on pulse-shrinking of the input pulse. The resolution of digital output can be easily improved by increasing the number of the pulse-shrinking elements, D latches and D flip flops. The TDC performance is improved in viewpoints of power consumption and chip area. Simulation results are shown to illustrate the performance of the proposed TDC circuit.

Estimation of baroreflex sensitivity using pulse arrival time rather than systolic blood pressure measurement

  • Lee, Jong-Shill;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.14-19
    • /
    • 2010
  • Baroreflex sensitivity (BRS) is a parameter of the cardiovascular system that is reflected in changes in pulse interval (PD and systolic blood pressure (SBP). BRS contains information about how the autonomic nervous system regulates hemodynamic homeostasis. Normally the beat-to-beat SBP measurement and the pulse interval measured from the electrocardiogram (ECG) are required to estimate the BRS. We investigated the possibility of measuring BRS in the absence of a beat-to-beat SBP measurement device. Pulse arrival time (PAT), defined as the time between the R-peak of the ECG and a single characteristic point on the pulse wave recorded from any arterial location was measured by photoplethysmography. By comparing the BRS obtained from conventional measurements with our method during controlled breathing, we confirmed again that PAT and SBP are closely correlated, with a correlation coefficient of -0.82 to -0.95. The coherence between SBP and PI at a respiration frequency of 0.07-0.12 Hz was similar to the coherence between PAT and PI. Although the ranges and units of measurement are different (ms/mmHg vs. ms/ms) for BRS measured conventionally and by our method, the correlation is very strong. Following further investigation under various conditions, BRS can be reliably estimated without the inconvenient and expensive beat-to-beat SBP measurement.

Estimation of Non- Invasive Blood Pressure Using Peripheral Plethysmograph (말초혈관 혈류 측정을 이용한 비관혈적 혈압 추정법에 대한 연구)

  • Jeong In-cheol;Shin Tae-min;Yoon Hyung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.504-509
    • /
    • 2005
  • This paper presents a new method for obtaining the noninvasive and unrestrained blood pressure readings noninvasively and unrestrainedly using based on reflected wave arrival time(RAT) in the volume of pulse. Since this new method employs only volume pulse, is more rapider and simpler than the method using pulse transit time(PTT) because it only employs the volume of pulse. Blood pressure, PTT and RAT were acquired from 15 healthy subjects. Each subjects were performed forty trials of each measurement. As a result of those trials, the mean error between oscillometric and RAT measurements for systolic blood pressure was $4.55\pm5.64mmHg$. This result showed quite equal with the mean error between oscillometric and PPT measurf:ments, $4.22\pm5.30mmHg$, However, it was not obtained a satisfactory result in the relativity of oscillometric to both RAT and PPT measurements for diastolic blood pressure because of personal difference. To conclude, the method of systolic blood pressure estimation noninvasively and unrestrainedly using by RAT may be used as the method by PTT. Nevertheless, additional studies would be necessary for the RAT/PTT estimation of diastolic blood Pressure measurement.

Design Optimization of High-Voltage Pulse Transformer for High-Power Pulsed Application (고출력 펄스응용을 위한 고전압 펄스변압기 최적설계)

  • Jang, S.D.;Kang, H.S.;Park, S.J.;Han, Y.J.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1297-1300
    • /
    • 2008
  • A conventional linear accelerator system requires a flat-topped pulse with less than ${\pm}$ 0.5% ripple to meet the beam energy spread requirements and to improve pulse efficiency of RF systems. A pulse transformer is one of main determinants on the output pulse voltage shape. The pulse transformer was investigated and analyzed with the pulse response characteristics using a simplified equivalent circuit model. The damping factor ${\sigma}$ must be >0.86 to limit the overshoot to less than 0.5% during the flat-top phase. The low leakage inductance and distributed capacitance are often limiting factors to obtain a fast rise time. These parameters are largely controlled by the physical geometry and winding configuration of the transformer. A rise time can be improved by reducing the number of turns, but it produces larger pulse droop and requires a larger core size. By tradeoffs among these parameters, the high-voltage pulse transformer with a pulse width of 10 ${\mu}s$, a rise time of 0.84 ${\mu}s$, and a pulse droop of 2.9% has been designed and fabricated to drive a klystron which has an output voltage of 284 kV, 30-MW peak and 60-kW average RF output power. This paper describes design optimization of a high-voltage pulse transformer for high-power pulsed applications. The experimental results were analyzed and compared with the design. The design and optimal tuning parameter of the system was identified using the model simulation.

  • PDF

Trichel Pulse in Negative DC Corona discharge and Its Electromagnetic Radiations

  • Zhang, Yu;Liu, Li-Juan;Miao, Jin-Song;Peng, Zu-Lin;Ouyang, Ji-Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1174-1180
    • /
    • 2015
  • We investigate in this paper the radiated electromagnetic waves together with the discharge characteristics of Trichel pulse of negative DC corona discharge in air in pin-to-plate and wire-to-plate configurations. The feature of the current pulse and the frequency spectrum of the electromagnetic radiations were measured under various pressures and gas gaps. The results show that the repetition frequency and the amplitude of Trichel pulse current depend on the discharge conditions, but the rising time of the pulse relates only to the radius of needle or wire and keeps constant even if the other conditions (including the discharge current, the gas gap and the gas pressure) change. There exists the characterized spectrum of electromagnetic waves from negative corona discharge in Trichel pulse regime. These characterized radiations do not change their frequency at a given cathode geometry even if the averaged current, the gas gap or the air pressure changes, but the amplitude of radiations changes accordingly. The characterized electromagnetic radiations from Trichel pulse corona relate to the formation or the rising edge of current pulse. It confirms that the characterized radiations from Trichel pulse supply information of discharge system and provide a potential method for detecting charged targets.