• Title/Summary/Keyword: Pulse width modulation (PWM) inverter

Search Result 244, Processing Time 0.025 seconds

Single-Phase Inverter System Using New Modulation Method (새로운 변조방식을 사용한 단상 인버터 시스템)

  • Lee, Hyoung-Ju;Won, Hwa-Young;Lim, Seung-Beom;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.29-36
    • /
    • 2010
  • In this paper, we propose a single-phase inverter system using new modulation method. The proposed system is composed of a buck-boost converter and an inverter and controlled by PWAM scheme. PWAM method is a new modulation method which is the incorporation of PWM(Pulse Width Modulation) and PAM(Pulse Amplitude Modulation) methods. The DC voltage which is the input voltage of buck-boost converter is converted into a variable DC voltage by buck-boost converter. Also, the variable DC voltage which is the output voltage of buck-boost converter is converted into a sinusoidal AC voltage by inverter. The input voltage of inverter is processed by PWM switching in PWM section and bypassed in PAM section. By using PWAM method, switching action is not existed in PAM section and thus the times of switching is reduced. As a result, the switching loss can be reduced.

Loss Analysis and Comparison of Grid-connected Bidirectional Inverter with Different Types of PWM Schemes (PWM 방식에 따른 계통연계 양방향 인버터의 손실양상 비교 및 분석)

  • Heo, Sung-Jun;Ahn, Hyo-Min;Byun, Jong-Eun;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.547-550
    • /
    • 2017
  • This paper presents a loss analysis and compares three pulse width modulation (PWM) methods applied in a three-phase grid-connected bidirectional inverter for an energy storage system. The losses in switching devices and output low pass filters are theoretically analyzed by using PWM control techniques. Grid-connected bidirectional inverters are designed by using PWM techniques, and the designed inverters are simulated to verify the analysis results.

A Novel Pulse-Width and Amplitude Modulation (PWAM) Control Strategy for Power Converters

  • Ghoreishy, Hoda;Varjani, Ali Yazdian;Farhangi, Shahrokh;Mohamadian, Mustafa
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.374-381
    • /
    • 2010
  • Typical power electronic converters employ only pulse width modulation (PWM) to generate specific switching patterns. In this paper, a novel control strategy combining both pulse-width and amplitude modulation strategies (PWAM) has been proposed for power converters. The Pulse Amplitude Modulation (PAM), used in communication systems, has been applied to power electronic converters. This increases the degrees of freedom in eliminating or mitigating harmonics when compared to the conventional PWM strategies. The role of PAM in the novel PWAM strategy is based on the control of the converter's dc sources values. Software implementation of the conventional PWM and the PWAM control strategies has been applied to a five-level inverter for mitigating selective harmonics. Results show the superiority of the proposed strategy from the THD point of view along with a reduction in the inverter power dissipation.

Analysis on Core Loss of Brushless DC Motor Considering Pulse Width Modulation of Inverter

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1914-1920
    • /
    • 2014
  • In this paper, characteristics of blushless direct current (BLDC) motor including core loss are analyzed considering pulse width modulation (PWM) of inverter. Input voltage of BLDC motor due to PWM is calculated considering duty ratio and carrier frequency of inverter in order to control torque or speed of BLDC motor. For the calculation of core loss, the input current with harmonics due to PWM voltage is calculated by using equivalent circuit model of BLDC motor according to switching pattern and carrier frequency. Next, core loss is analyzed by inputting the currents as a source of BLDC motor for FEM. Characteristics including core loss are compared with ones without PWM waveform according to reference speed.

Hybrid Pulse Width Modulation Strategy for Wide Speed Range in IPMSM with Low Cost Drives

  • Ahn, Han-woong;Go, Sung-chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.670-674
    • /
    • 2016
  • The control performance of hybrid PWM inverter using a phase current measurement is presented in this paper. The hybrid PWM technique consists of space vector pulse width modulation (SVPWM) and six-step voltage control operation. The SVPWM is performed to reduce the harmonic components in the low speed region, and the six-step modulation is applied to increase the maximum speed of the IPMSM in the high speed region. Therefore, it is possible to obtain a great performance in both the low speed range and high speed range. However, the six-step modulation cannot be completely implemented, since the inverter that includes the lag-shunt sensing method has an immeasurable current region. In this paper, a quasi-six-step modulation using a modified voltage vector is proposed. The validity and usefulness of the proposed PWM technique is verified by MATLAB/Simulink and experimental results.

A Study on the 3 phase 5 level PWM inverter reducing harmonics (고조파 저감형 3상 5레벨 PWM 인버터에 관한 연구)

  • 송언빈
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.80-84
    • /
    • 1995
  • ABSTRACT - This paper presents a software based 3 phase 5 level pulse-width modulation(PWM) inverter to reduce total harmonic distortion. The proposed modulation technique can reduce total harmonic distortion and significantly improve the performance of the inverter. In the modulation mode where the frequency ratio is 36 and modulation index is 1.2∼2.0, harmonic components have been mostly eliminated and the magnitude of fundamental component have been maximized by the 3 phase 5 level PWM inverter.

  • PDF

Optimal Switching Pattern of Voltage Source Inverter (전압원인버어터의 최적스위칭패턴)

  • 정필선;정동화;이윤종
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.4
    • /
    • pp.386-398
    • /
    • 1987
  • This paper is proposed the Suboptimal PAWM(Pulse Amplitude Width Modulation) for minimize harmonic effects generated by switching operation of PWM Inverter. This strategy determine one switching pattern at a fixed point(fundamental) voltage u1=1.2) which THD(Total Harmonic Distortion) are minimized in the suboptimal PWM strategy, and controls only frequency in the inverter while voltage control is carried out by DC Chopper in the DC Link. This strategy is applied at VSD(Variable Speed Drive) of Three phase induction moter, and acoustic noise of motor, line to line voltage and current of inverter, current harmonic spectrum was estimated and also compared with other switching strategy. From the results, the validity of this strategy can be verified.

  • PDF

Single-Phase Step-Up Five-Level Inverter with Phase-Shifted Pulse Width Modulation

  • Chen, Jianfei;Wang, Caisheng;Li, Jian
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.134-145
    • /
    • 2019
  • A single-phase step-up five-level inverter topology with a new phase-shifted pulse width modulation (PS-PWM) strategy is proposed in this paper. When compared with conventional single-phase five-level inverter topologies, the proposed topology can realize multilevel inversion with a double step-up ratio, a reduced number of switching devices and self-balanced capacitor voltages. When compared with the conventional PS-PWM strategy, the new PS-PWM strategy can be implemented with one carrier reduced, which makes it much easier to implement in a digital signal processor (DSP) system. Experimental results have been presented to verify the effectiveness of the proposed inverter and the PS-PWM strategy.

Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation

  • Chen, Keng-Yuan;Hu, Jwu-Sheng;Lin, Jau-Nan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.388-397
    • /
    • 2016
  • An error-compensated pulse width modulator (ECPWM) is proposed to improve the baseband harmonic performance and the switching loss of voltage source inverters (VSIs). Selecting between harmonic distortion and switching loss is a design tradeoff in the conventional space vector pulse width modulation. In this work, an accumulated difference in produced and desired phase voltages is considered to adjust the reference signal. This mechanism can compensate for the voltage error in the previous carrier period. With error compensation every half-carrier period, the proposed ECPWM allows one-half reduction in carrier frequency without scarifying baseband harmonic distortion. The proposed modulator is applied to a three-phase VSI with R-L load and a motor-speed-control system for experiments. The measured efficiency and operating temperature of switches confirm the effectiveness of the proposed scheme.

A Carrier-Based Pulse Width Modulation Method for Indirect Matrix Converters

  • Nguyen, Dinh-Tuyen;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.448-457
    • /
    • 2012
  • This paper proposes a carrier-based pulse width modulation (PWM) method to control an indirect matrix converter (IMC) by analyzing the relationship between the space vector PWM (SVPWM) and the carrier-based PWM. The complexity of the SVPWM method for an IMC can be reduced by using an equivalent carrier-based PWM method. The advantage of the proposed algorithm is its ability use only one symmetrical triangular carrier signal to generate the gate signals for all of the power switches in both the rectifier and inverter stages as compared to the conventional method where the carrier signal used in the rectifier stage is different from that of the inverter stage. In addition, by using a suitable offset voltage component in the modulation signals, the output voltage magnitude reaches 0.866 of the input voltage magnitude. Simulation and experimental results are provided in order to validate the proposed method.