• Title/Summary/Keyword: Pulse transformer

Search Result 260, Processing Time 0.029 seconds

Pulse Width and Pulse Frequency Modulated Soft Commutation Inverter Type AC-DC Power Converter with Lowered Utility 200V AC Grid Side Harmonic Current Components

  • Matsushige T.;Ishitobi M.;Nakaoka M.;Bessyo D.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.484-488
    • /
    • 2001
  • The grid voltage of commercial utility power source hi Japan and USA is 100rms, but in China and European countries, it is 200rms. In recent years, In Japan 200Vrms out putted single phase three wire system begins to be used for high power applications. In 100Vrms utility AC power applications and systems, an active voltage clamped quasi-resonant Inverter circuit topology using IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped high-frequency Inverter type AC-DC converter using which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. This zero voltage soft switching Inverter can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant Inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull type Inverter are evaluated and discussed for consumer microwave oven. The harmonic line current components In the utility AC power side of the AC-DC power converter operating at ZVS­PWM strategy reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  • PDF

The Simultaneous Control Active and Reactive Power by SMES with Asymetrically Controlled 12 pulse Series Bridge Converter (12 펄스 시리즈 브릿지 컨버터의 비대칭 제어에 의한 초전도 에너지 저장장치의 P, Q 동시제어)

  • Han, S.J.;Han, S.Y.;Rhee, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.9-12
    • /
    • 1988
  • This paper shows a asymmetrically controlled method for the simultaneous control of real and reactive power generated by Superconducting Magnetic Energy Storage (SMES). Asymmetrically controled 12 pulse converter has been proposed in this paper for harmonic reduction of transformer primary current.

  • PDF

Pulse-Grouping Control Method for High power Density DC/DC Converters

  • Kang, Shin-Ho;Jang, Jun-Ho;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.2 s.19
    • /
    • pp.45-48
    • /
    • 2007
  • The proposed method offers an improved DC/DC converter scheme to increase power density. It is based on half-bridge topology with newly introduced pulse-grouping control method, which helps to reduce the transformer size and the volume of semiconductor devices maintaining high efficiency. Test results with 85W(18.5V/4.6A) design shows that the measured efficiency is 93.5% with power density of $36W/in^3$.

  • PDF

Power Loss Analysis of Transformer Caused By Current Harmonics (전류 고조파에 기인하는 변압기 손실 해석)

  • Jang, Seungyong;Han, Sanghoon;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.34-41
    • /
    • 2016
  • This study investigates transformer losses caused by current harmonics. Electrical transformers are designed to work under sinusoidal voltage and current waves at a rated frequency. Recently, various nonlinear loads, such as power electronic converters, are connected to a power system; these converters generate current harmonics. Current harmonics increase power loss in transformers, which results in several problems, including temperature increase of the transformer and insulation damage. These problems will eventually shorten the operational life of the transformer. In this study, different types of losses caused by current harmonics in three-phase transformers are studied under linear and nonlinear load conditions. Linear loads are simulated and experimented on using pure resistance load, whereas nonlinear loads are simulated and experimented on using a three-phase twelve-pulse thyristor full-bridge rectifier. The different types of losses in three-phase transformers are evaluated analytically through the experimental result and simulation in PSiM.

Development of PC based High Voltage Generator for Dental CT (PC기반 치과 CT용 고전압 펄스 발생장치 개발)

  • Kim, Hack-Seong;Oh, Jun-Yong;Song, Sang-Hoon;Won, Choong-Yeon
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.580-582
    • /
    • 2008
  • The object of this paper is develope the PC based controlled high voltage power supply and studies 1.2kW(120kV, 10mA) pulse power X-ray generator possible to adapt fluoroscopy of Dental CT X-ray generator and industrial X-ray pulse power equipment. The developed pulse power X-ray generator consisted of mono-block tank include X-ray tube and high voltage X-ray power supply circuit and high voltage control unit with RS232C/422 communication port. The PC control program of pulse power X-ray generator uses LabVIEW, and the size of high voltage transformer and high voltage generator is minimized by high voltage high frequency inverter has 100kHz switching frequency. Also this paper shows result of X-ray tube voltage and tube current correspond to variable load.

  • PDF

Design of 60KV, 300A, 3kHz Pulse Power Supply (60kV, 300A, 3kHz 펄스전원 장치 설계)

  • Ryoo, H.J.;Jang, S.R.;Kim, J.S.;Rim, G.H.;Gussev, G.I.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.904-905
    • /
    • 2008
  • In this paper, a novel 60kV, 300A, 3kHz pulsed power supply based on IGBT stacks is proposed. Proposed scheme consists of series connected 9 power stages to generate maximum 60kV output pulse and 15kW series resonant power inverter to charge DC capacitor voltage. Each power stages are configured as 8 series connected power cells and each power cell generates up to 830VDC, 300A pulses. Finally pulse output voltage is applied using total 72 series connected IGBTs. The synchronization of gating signal is important of series operation of IGBTs. For gating signal synchronization, full bridge inverter and pulse transformer generates on-off signals of IGBT gating and specially designed gate power circuit was used.

  • PDF

A New Gate Pulse Generating Method of 12-Pulse Phase Controlled Rectifier for HVDC (HVDC용 12-펄스 위상제어정류기의 새로운 게이트 펄스 발생 기법)

  • Ahn, Jong-Bo;Kim, Kook-Hun;Lee, Jong-Moo;Lee, Ki-Do
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.139-141
    • /
    • 2000
  • High voltage direct current(HVDC) transmission system uses the phase controlled rectifier triggered by means of IPC(individual phase control) or EPC(equidistant pulse control). Most HVDC system has adopted EPC method that can solve the harmonic instability problem of IPC method in weak power system. But EPC has inherent indirect synchronizing problem requiring the closed loop control. This paper presents the new gate pulse generating method for 12-pulse HVDC converter, which combines IPC with EPC. Simulation and test results are presented. The basic concept is that it generates the gating pulse for 12-pulse converter by synthesizing the internal phase reference using the frequency and phase information of a sin91e phase voltage. To ensure the reliability of the external phase input, Potential transformer that detects the phase voltage has redundancy. Using fault detecting algorithm the healthy input is always guaranteed. And the frequency compensation function was reinforced.

  • PDF

Optimization of the Large Scale Magnetic Pulse Compression System of 100 ns-order (100 ns급 대용량 자기펄스 압축시스템의 최적화)

  • 이용우;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.442-445
    • /
    • 2003
  • In this study, we developed the 40 J-class MPC(magnetic pulse compression) system for exciting excimer laser and investigated the optimal conditions of each stage of MPC circuit. This system consists of a DC power supply, a pulse transformer and four saturable inductors. The number of turns of saturable inductors at each stage of MPC circuit are 140, 25, 5, 1 and the optimal storage capacitance of each stage are 34 nF, 28.9 nF, 22.1 nF, respectively. In the improvement MPC system, we have obtained an output voltage of 43 kV, a current of 8.25 kA and a pulse duration of 360 ns. Also, the maximum pulse compression ratio of 77.7 and the current gain of 71.7 were obtained.

  • PDF

A Comparative Analysis of Switching Losses of High Voltage IGBTs in Solid State Transformer Applications (반도체 변압기를 위한 고압 IGBT의 스위칭 손실 특성 비교)

  • Yoon, Chun gi;Cho, Younghoon;Kim, Ho-Sung;Baek, Ju Won;Cho, Youngpyo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.107-108
    • /
    • 2016
  • Solid State Transformer(SST) has been recently regarded as a good alternative to conventional low frequency transformer. SST is consist of several high voltage power stage, so it is important to select optimal semiconductor switches for specification. This paper presents optimal IGBT switches for low switching losses using analyzing switching characteristics of several high voltage IGBT switches. Double Pulse Tester(DPT) experiment is used to verify characteristics of this IGBT switches.

  • PDF

A Modular Bi-Directional Power Electronic Transformer

  • Gao, Zhigang;Fan, Hui
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.399-413
    • /
    • 2016
  • This paper presents a topology for a modular power electronic transformer (PET) and a control scheme. The proposed PET consists of a cascaded H-Bridge rectifier on the primary side, a high-frequency DC/DC conversion cell in the center, and a cascaded H-Bridge inverter on the secondary side. It is practical to use PETs in power systems to reduce the cost, weight and size. A detailed analysis of the structure is carried out by using equivalent circuit. An algorithm to control the voltages of each capacitor and to maintain the power flow in the PET is established. The merits are analyzed and verified in theory, including the bi-directional power flow, variable voltage/frequency and high power factor on the primary side. The experimental results validated the propose structure and algorithm.