• Title/Summary/Keyword: Pulse plasma

Search Result 499, Processing Time 0.026 seconds

Non-Thermal Plasma Technique for Removing $SO_2$ and $NO_x$ from Combustion Flue Gas (연소가스내 탈황탈질처리를 위한 저온 플라즈마 기술)

  • Song, Yeong-Hun;Sin, Wan-Ho;Kim, Seok-Jun;Jang, Gil-Hong
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.69-76
    • /
    • 1997
  • Industrial-scale pulse corona process to remove $SO_2$ and $NO_x$ simultaneously from combustion flue gas has been studied. The pilot plant built in the present study treats 2,000 $Nm^3$/hr of flue gas from a boiler. The geometry of the pulse corona reactor is similar to that of an electrostatic precipitator commonly used in industry, A thyratron switch and magnetic pulse compressors, which can generate up to 130 kV of peak pulse voltage and up to 30 kW of average pulse power, have been used to produce pulsed corona. The removal efficiencies of $S0_2$ and $NO_x$ with the present process are maximum of 95 % and 85 %, respectively. Electrical power consumption to produce the pulsed corona, which has been one of the major difficulties to apply this process to industry, has been evaluated in the present study. The results showed that the power consumption can be reduced significantly by simultaneous addition of hydrocarbon injection and heterogeneous phase reactions to the process.

  • PDF

Influence of frequency and duty ratio on electro-optical characteristics in AC-PDP (AC-PDP에서의 주파수 및 duty비의 영향에 따른 전기광학적 특성)

  • Kim, T.Y.;Cho, T.S.;Ahn, J.C.;Choi, M.C.;Jeoung, J.M.;Leem, J.Y.;Jeoung, Y.H.;Kim, S.S.;Chong, M.W.;Choi, S.H.;Kim, S.B.;Ko, J.J.;Cho, K.S.;Choi, E.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.139-142
    • /
    • 2000
  • Influence of frequency and duty ratio on electro-optical characteristics are experimentally investigated in surface AC plasma display panels(AC-PDPs) by using the VDS(Versitile Driving Simulator)., in which electrode gap and width are 100 ${\mu}m$ and 260 ${\mu}m$, respectively. The filling gas is Ne-Xe gas mixture, and total pressure 400 Torr. It is found that the response time gets to be fast from 450 ns to 150 ns as pulse-off time of the sustain pulse decreases from 2 ${\mu}s$ to 0.2 ${\mu}s$. Also it is found that the IR(Infra Red) intensity and the luminous decreases as pulse-off time of the sustain pulse increases from 0.2 ${\mu}s$ to 2 ${\mu}s$.

  • PDF

Characteristics of Al Doped ZnO Thin Film by Modulated Pulsed Power Magnetron Sputtering

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.430-430
    • /
    • 2012
  • Modulated pulsed power (MPP) 스퍼터링은 펄스 전압 shape, amplitude, duration의 modulation을 통해 증착율 손실을 극복하는 고출력 펄스 마그네트론 스퍼터링의 한 종류이다. Micro second 범위에서 on/off 시간을 다중 세트 형태로 자유롭게 프로그램 할 수 있어서 아킹 없이 고전류 영역의 마그네트론 동작을 할 수 있으므로, 고주파 유도 결합 플라즈마원이나 마이크로웨이브 투입 등의 부가적인 플라즈마 없이도 스퍼터링 재료의 이온화 정도를 획기적으로 높일 수 있는 장점을 가지고 있다. 본 연구에서는 $2{\times}1{\times}0.2$의 sputtering system에서 기판 캐리어를 이용해서 $400{\times}400mm$ 기판을 $272{\times}500mm$ 크기의 AZO target (Al 2 wt%)이 설치되어 있는 moving magnet cathode (MMC)을 이용하여 MPP로 증착했다. 두 종류의 micro pulse set을 하나의 macro pulse에 사용함으로서 weakly ionized plasma와 strongly ionized plasma를 만들 수 있다. 다양한 micro pulse set을 이용하여 평균 전력 2 kW에서 peak 전력을 4 kW에서 45 kW까지 상승 시킬 수 있으며, 이 때 타겟-기판 거리 80 mm에서 이온전류밀도는 $5mA/cm^2$에서 $20mA/cm^2$까지 상승했다. MPP는 같은 평균 전력에서 repetition frequency가 증가할 때, 증착 속도가 증가했으며, 같은 repetition frequency에서 macro pulse length가 증가할 때도, 증착 속도가 증가했다. 최적화된 marco, micro pulse set에서 증착 속도는 평균 전력 2 kW에서 110 nm/min이었고, 700 nm의 박막에서 비저항은 $1-2{\times}10^{-3}ohm{\cdot}cm$였다. 표면거칠기 Rrms는 약 3 nm였고, 400-700 nm 영역의 평균 투과도는 72-76%였다.

  • PDF

RESEARCH ON LASER-ACCELERATED PROTON GENERATION AT KAERI

  • PARK SEONG HEE;LEE KITAE;CHA YOUNG HO;JEONG YOUNG UK;BAIK SUNG HOON;YOO BYUNG DUK
    • Nuclear Engineering and Technology
    • /
    • v.37 no.3
    • /
    • pp.279-286
    • /
    • 2005
  • A prototype of a relativistic proton generation system, based on laser-induced plasma interaction, has been designed and fabricated. The system is composed of three major parts: a fs TW laser; a target chamber, including targets and controls; and a diagnostic system for charged particles and lasers. An Offner-type pulse stretcher for chirped pulse amplification (CPA) and eight pass pre-amplifier are installed. The main amplifier will be integrated with a new pumping laser. The design values of the laser at the first stage are 1 TW in power and 50 fs in pulse duration. We expect to generate protons with their maximum energy of approximately 3 MeV and the flux of at least $10^6$ per pulse using a 10 $\mu$m Al target. A prototype target chamber with eight 8-inch flanges, including target mounts, has been designed and fabricated. For laser diagnostics, an adaptive optics based on the Shack-Hartmann type, beam monitoring, and alignment system are all under development. For a charged particle, CR-39 detectors, a Thomson parabola spectrometer, and Si charged-particle detectors will be used for the density profile and energy spectrum. In this paper, we present the preliminary design for laser-induced proton generation. We also present plans for future work, as well as theoretical simulations.

A Pulse Power Supply for a Metal Vapor Laser Using IGBTs (IGBT를 사용한 금속증기레이저용 펄스 전원)

  • 진정태;차병헌;김철중;이흥호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.415-419
    • /
    • 2004
  • A pulse power supply using IGBTs and MPC (magnetic pulse compression) circuit was developed for a metal vapor laser. The life time of the pulse power supply is expected to be much longer than that of a vacuum tube or thyratron type pulse power supply. A series-connected IGBT array generated a long pulse of its pulse width 2 ${\mu}\textrm{s}$ md then it was compressed to less than 100 ns by a three stage MPC circuit. This pulse power supply was applied to a laser plasma tube of 10 mm inner diameter and 0.5 m discharge length. and successfully operated.

Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator (펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구)

  • Kim, Young Sun;Shin, Jichul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.907-913
    • /
    • 2017
  • The performance of a spark jet driven by pulsed-arc plasma was investigated experimentally for various energy input. A high-speed jet (about 330 m/s) was obtained by rapid gas heating produced by 37 mJ of deposited energy per pulse. The peak velocity and penetration distance of the jet were proportional to the deposited power and the deposited energy per pulse, respectively. A smaller orifice diameter produces a higher velocity jet at lower energy levels. For the same deposited energy, higher-current pulses produce a higher jet velocity than higher-pulse-width pulses. A total deposited energy of about 10 mJ per pulse with a pulse duration of about $10{\mu}s$ was found to be the optimum for energy- efficient operation.

Detonation Initiation via Surface Chemical Reaction of Laser-Ablated Aluminum Sample (표면화학 반응을 통한 Laser-Ablated 알루미늄의 Detonation 현상 연구)

  • Kim, Chang-Hwan;Yoh, Jai-Ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.197-204
    • /
    • 2012
  • We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination and X-ray diffraction (XRD) of aluminum plasma ablated by a high-power laser pulse (>1000 mJ/pulse) and oxygen from air. Hence, the formation of laser-supported detonation and combustion processes has been investigated. The essence of this paper is in observing the initiation of chemical reaction between the ablated aluminum plasma and oxygen from air by the high-power laser pulse (>1000 mJ/pulse) and in conducting a quantitative comparison of the chemically reactive laser-initiated waves with the classical detonation of an exploding aluminum (dust) cloud in air. The findings in this work may lead to a new method of initiating detonation from a metal sample in its bulk form without any need to mix nanoparticles with oxygen for initiation.

Improvement of Color Temperature using Auxiliary Address Pulse Driving Scheme in 42-in. WVGA Plasma Display Panel

  • Park, Ki-Hyung;Lee, Eun-Cheol;Cho, Ki-Duck;Tae, Heung-Sik;Chien, Sung-Il
    • Journal of Information Display
    • /
    • v.6 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • Auxiliary address pulse driving scheme is proposed for controlling and improving the color temperature of the 42-inch WVGA ac-plasma display panel (ac-PDP) without sacrificing total luminance. Under a white-background, the color temperature of 42-inch ac-PDP is improved by about 1,700 K, whereas under a black-background, the color temperature of 42-inch ac-PDP is improved by about 3,200 K. In addition, by properly controlling the luminance in the R, G, and B cells, the color temperature of 42-inch ac-PDP can be raised from 5,827K to 10,705K.

A study on development of 30GW class high power glass laser system (30GW급 대출력 글라스레이저의 개발연구)

  • 강형부
    • 전기의세계
    • /
    • v.31 no.5
    • /
    • pp.383-390
    • /
    • 1982
  • The high power glass laser system was designed and constracted which consisted of a TEM$\_$00/ mode Q-switching oscillator, a pulse shaping, system, two-stage pre-amplifiers, five-stage main amplifiers, a Faraday rotator, and a uni-guide slit. The laser output of 3OGW with the pulsewidth of 2 nsec was obtained by performing the amplifiing experiment in this system. When the laser light with the pulsewidth of 10 nsec was amplified, the large factor of amplification was obtained in the beginning of pulse, but the factor of amplification decreased gradually in the later part of pulse. Therefore, the laser light which has short pulsewidth of-2nsec must be amplified in order to obtain the larger factor of amplification. When the laser beam from the high power glass laser system was irradiated to plasma, the reflected laser light from plasma which occured inevitably could be attenuated to the order of 10$\^$-4/ by using the Faraday rotator and the uni-guide slit.

  • PDF

Modelling of Pulsed Plasma Reactor (펄스 플라즈마 반응기의 모델링)

  • Choi, Y.W.;Lee, H.S.;Rim, G.H.;Kim, T.H.;Joung, J.H.;Kim, J.W.;Jang, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2013-2015
    • /
    • 1999
  • The pulsed plasma wire-plate reactor was modelled on the basis of experiment and EMTP simulation. The electrical phenomena in reactor is consistent with the model we suggested. Using this model, the influence of the reactor capacitance on the impedance matching between pulse generator and reactor can be analyzed. From this, we found that the energy of 95 % was delivered from pulse generator to reactor at the ratio of $C_p$/$C_r$ $\cong$ 30 %, where $C_p$ is pulse generator capacitance, $C_r$ is reactor capacitance.

  • PDF