• Title/Summary/Keyword: Pulse parameters

Search Result 832, Processing Time 0.028 seconds

Proposal of pulse parameter useful for pulse wave analysis in oriental medicine: Preliminary study on floating and sinking pulses (통계분석을 통한 한의 맥진에 유용한 파라미터 도출: 부침맥을 중심으로 한 예비연구)

  • Lee, Jeon;Lee, Yu-Jung;Lee, Hae-Jung;Choi, Eun-Ji;Kim, Jong-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.244-246
    • /
    • 2006
  • In this study, we search some parameters well-related to floating-sinking pulse by statistical analysis, because these pulses are frequently used in clinic. Pulse signals were acquired by 3D pulse analyzer and 30 subjects consist of 15 people diagnosed as floating pulse and 15 people diagnosed as sinking pulse by oriental doctors who have over 5 years clinical experience. Then, we made a representative beat template for each subject and, through a peak detection algorithm, we calculated several pulse parameters. To find the parameters related to floating-sinking pulse, we performed statistical testing with 17 parameters through the independence sampling, t-test. As a result, there is the biggest difference between pressure, the maximum pulse pressure, diastolic area(Ad) and float-sink data. (p < .05).

  • PDF

Effect of current waveform on drop transfer in pulsed gas metal arc welding (Pulsed GMAW 의 전류 파형이 금속이행에 미치는 영향)

  • Hammad, Muhammad A.;Yoo, Choong-D.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.48-48
    • /
    • 2009
  • Conventionally in pulsed gas metal arc welding (GMAW-P), drop transfer is analyzed with simplest square pulse waveform. While the pulse current is described by four parameters (peak current magnitude and time plus base current magnitude and time), it deviates the real pulse shape. Real pulse can be better idealized by the trapezoidal pulse waveform described by two additional parameters, i.e., current rise and fall rate (dI/dt). Power source response rate is described by these parameters. In this work, the effect of these parameters on drop transfer is predicted by the force displacement model (FDM). While peak current has significant effects on drop detachment, drop transfer is also influenced by the current rise rate. Predictions indicate that the current rise rate can have considerable effects on the size of the detached drop if other pulse parameters are kept constant. FDM is applied to determine peak time for one drop one pulse condition (ODOP) when rests of the pulse parameters are given. The predicted range of ODOP shows good agreement with experimental data.

  • PDF

Properties of Pulse Waveforms by Posture Changes : Standing, Sitting, Supine Posture (측정 자세의 변화에 따른 맥의 변화 특성 : 선 자세, 앉은 자세, 누운 자세)

  • Kown, Sun-Min;Kang, Hee-Jung;Lee, Sang-Hun;Yim, Yun-Kyoung;Lee, Yong-Heum
    • Korean Journal of Acupuncture
    • /
    • v.26 no.4
    • /
    • pp.13-22
    • /
    • 2009
  • Objectives : Informations on pulse diagnosis in literature are based on diagnosing pulse waveforms on supine posture. However, today's pulse waveforms are measured on various postures for the convenience of patients or doctors. For objective measurement, the effect of posture on the pulse waveforms should be considered. The objective of this study was to find posture-related changes in the radial pulse waveforms. Methods : We used an instrument, DMP-3000(DAEYOMEDI Co., Ansan, Korea), measuring radial pulse waveforms noninvasively by tonometric method. 25 male subjects participated in the trial. Before measuring radial pulse waveforms subjects had rest for 5 min. The pulse waveforms were measured on the left wrist. Each subject underwent this course on the supine, sitting, and standing posture. We analyzed pulse waveforms with Height-parameters, Time-parameters, Energy, and Elastic rate. Results : Height-parameters(h1~h5) on the supine posture were bigger than those on the sitting and standing posture. In case of Time-parameters, the parameters making up systolic time decrease in order of on standing, sitting, and supine position. However, systolic time and diastolic time didn't have any changes. Energy of pulse was the biggest on supine posture and Elastic rate on standing posture. Conclusions : In this study we found that posture changes affect radial pulse waveforms. For quantification of the changes, more trials should be done. After analyzing much data we might apply parameters of pulse waveforms changed by posture. Also, we might diagnose special disease with properties of pulse waveforms by posture.

  • PDF

Correlation between Pulse-respiration Ratio and Heart Rate Variability (맥솔(脈率)과 심박변이도(心搏變移度)의 상관성(相關性) 연구(硏究))

  • Yang, Dong-Hoon;Park, Young-Bae
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.10 no.2
    • /
    • pp.104-120
    • /
    • 2006
  • Background : Pulse-respiration ratio has been used for estimating subject's status in oriental medicine. Pulse and respiration is strongly associated with autonomic nerve system. But there is no research about correlation between pulse-respiration ratio and autonomic nerve system. Objectives : We performed this study to know correlation between pulse-respiration ratio and HRV(heart rate variability) that shows autonomic nerve system status well and to clarify clinical meaning of pulse-respiration ratio. Methods : After subject's 10 minutes rest, we measured subject's ECG, respiration pattern and HRV. In this research, subject's number is 95(Male 50/Female 45). We calculated pulse-respiration ratio from ECG and respiration pattern. Then, we analyzed correlation between pulse-respiration ratio and HRV parameters in all subjects, 2 group divided by Wan-Maek(P-R ratio 4.28). We tried to compare HRV parameters among Wan-Maek, Sak-Maek and Ji-Maek group. Correlation analysis between pulse-respiration Ratio and Pulse rate, respiration rate is performed. Finally correlation analysis between Respiration and HRV parameters in all subjects, 2 group divided by Wan-Maek(4.28) is studied. Results : 1. Mean pulse-respiration is 4.10${\pm}$0.67, Mean pulse rate is 68.06${\pm}$7.82bpm, Mean respiration rate is 16.81${\pm}$2.72 times per minute in all subjects. 2. Correlation analysis between pulse-respiration ratio and HRV parameters of high pulse-respiration ratio group is not significant. But, in low pulse-respiration ratio group, HFnorm(correlation coefficient 0.306, p= 0.018), lnHF (0.308, p=0.002) is significantly correlated with pulse-respiration ratio. 3. Comparison of HRV parameters among Wan-Maek, Sak-Maek and Ji-Maek Group is not significant. 4. Pulse-respiration ratio is more affected by respiration rate(correlation coefficient-0.17, p=0.000) than pulse rate (correlation coefficient 0.396, p=0.000). 5. Correlation analysis between respiration rate and HRV parameters of high pulse-respiration ratio group is not significant. But, in low pulse-respiration ratio group, HFnorm (correlation coefficient -0.327, p=0.011), LF/HF(0.346, p=0.007), lnHF (-0.355, p=0.006) are significantly correlated with respiration rate. Conclusion : Pulse-respiration ratio and parasympathetic index has positive correlation. The closer Wan-Maek, The higher parasympathetic index in low pulse-respiration ratio group. Respiration rate is more related with pulse-respiration ratio than pulse rate. Respiration is negatively correlated with autonomic parameters. And the slower respiration, the higher parasympathetic index in low pulse-respiration ratio group.

  • PDF

PWPF Parameters Design for Thruster Control (추력기 제어를 위한 PWPF 설계변수 설계)

  • Kim, Taeseok;Rhee, Seung-Wu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.10
    • /
    • pp.872-880
    • /
    • 2017
  • Usually, on/off control method is a way to control the thruster. Bang-Bang Control, PWM(Pulse Width Modulator) and PWPF(Pulse Width Pulse Frequency) are widely used as a typical way. When we are designing PWPF, the incorrectly designed parameters($K_m$, ${\tau}$, $U_{on}$, $U_{off}$, $U_m$) make trouble, such as the phase lag, the wasted fuel, the reduced system life. Therefore, the effect of parameters on the system performance should be analyzed before the proper parameters are selected. In this paper, we suggest the PWPF parameters design method by performing a static analysis, and analyze the interactive effects on design parameters by performing a dynamic analysis and simulation.

Evaluation of reactor pulse experiments

  • I. Svajger;D. Calic;A. Pungercic;A. Trkov;L. Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1165-1203
    • /
    • 2024
  • In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

Analysing of pulse wave parameter and typical pulse pattern for diagnosis in floating and sinking pulses (${\cdot}$ 침맥 진단에 유용한 맥상 파라메터 및 대표맥상 분석)

  • Lee, Yu-Jung;Lee, Jeon;Choi, Eun-Ji;Lee, Hae-Jung;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.2 s.17
    • /
    • pp.93-101
    • /
    • 2006
  • Pulse feeling is one of the most important diagnosis method in Oriental medicine. But it is not easy to make an objective and standardized diagnosis. In this study, we found how to quantify diagnosis. Specially dally the high practicality in clinic, we search some parameters especially well-related to floating and sinking pulse by statistic analysis. By extension, we find the pulse patterns of the floating and sinking pulse. We choose 15 subjects diagnosed as floating pulse and 15 subjects diagnosed as sinking pulse by oriental doctors. And their pulse signals were acquired by Pulse analyzer which has piezoresistive pressure sensor. For the quantification of the floating and sinking pulse, at first, we examined the parameters which were highly correlated with oriental doctor's diagnosis. And then we derived pulse patterns of the floating-sinking pulse from preprocessed signal and its ensemble average. We also looked trend variation (PH-Curve) between contact and pulse pressure. As a result, statistically there is the biggest difference between contact pressure, the maximum pulse pressure, diastolic area (Ad) and floating and sinking data. Through the PH-Curve, which represented the relationship between contact and pulse pressure, we could divide the floating and sinking pulse clearly. As a basic research of pulse diagnosis algorithm, we can contribute to select essential parameters in diagnosis algorithm And using these diagnosis method, we expect to find typical pulse patterns and some useful parameters about other pulses like slow/rapid, large/fine pulse and so on. We hope that this study will contribute pulse objectification.

  • PDF

Clinical Study on the Sasang Constitutional Pulse Using Array Piezoresistive Sensor (어레이 압저항 센서를 활용한 체질맥 임상연구)

  • Lee, Si-Woo;Joo, Jong-Cheon;Kim, Kyung-Yo;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.18 no.1
    • /
    • pp.118-131
    • /
    • 2006
  • 1. Objective Pulse diagnosis is generally applied to Traditional Oriental Medicine but not to Sasang Constitution diagnosis. Recently new pulse analyzer using array piezoresistive sensor and multi-channel robot arm developed. It reflects Oriental Medical Doctors' diagnostic processes, and its reproducibility test was done at Korea Institute of Oriental Medicine. We performed this study to set parameters diagnosing Sasang Constitution. 2. Methods One hundred thirty three subjects participated in this study. They are healty and approved this study. Before being tested with pulse analyzer, they had interview with Sasang Constitution Specialist to diagnose their Sasang Constitution. We established some useful parameters from parameters of pulse analyzer according to the Original Texts of Oriental Medicine and clinical experiences to analyze with clinical data of this study. 3. Results (I) There is a significant difference in pre-dicrotic notch time among all parameters of pulse analyzer in Sasang Constitution groups(P=0.047). (2) There is a significant difference in maximum pulse pressure in 33 to 48 year Sasang Constitution groups(P=0.010). (3) There is a significant difference in frequency width in 17 to 32 year Sasang Constitution groups(P=0.002). (4) There is a significant difference in CFS value in groups which OMD diagnoses; Floating & Sinking pulse(P=0.020). (5) There is a significant difference in pulse rate in groups which OMD diagnoses; Rapid & Slow pulse(P=0.000). (6) There is a significant difference in maximum pulse pressure in groups which OMD diagnoses; Deficient & Solid pulse(P=0.000). 4. Conclusions Analyzing parameters in each Sasang Constitution group, we found it shows significant difference in maximum pulse pressure and corresponding tendency in coefficient of floating & sinking pulse with theories of Sasang Consti-tutional Medicine. As we accumulate more clinical data, we will establish algorithm to diagnose Sasang Constitution using a pulse analyzer.

  • PDF

Pulse Wave Parameters Changes between Normotensive and Hypertensive Group (정상 혈압군과 고혈압군에서의 맥파 파라미터 분석에 관한 연구)

  • Kim, Eun-Geun;Heo, Hyun;Nam, Ki-Chang;Huh, Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1999-2000
    • /
    • 2008
  • In this study, pulse wave parameters changes were verified between normotensive and hypertensive group. To measure pulse wave in radial artery, non-invasive tonometric pulse wave measurement device (SphygmoCor PX, AtCor, Austrailia) was used. 136 subjects participated in this study. Among 20 parameters, 16 parameters changes were analysed(p < 0.05) between normotensive(n=104) and hypertensive group(n=32). As a results, several parameters related with pulse pressure, reflective pulse wave, systolic and diastolic function of heart showed significant difference between normotensive and hypertensive group.

  • PDF

The Effect of Sa-Am Stomach Tonifying Acupuncture on Radial Pulse in Healthy Human Subjects (위정격(胃正格) 자침이 정상 성인의 맥파(脈波)에 미치는 영향)

  • Choi, Joo Young;Kang, Jae Hui;Yim, Yun Kyong;Lee, Hyun
    • Journal of Acupuncture Research
    • /
    • v.29 no.6
    • /
    • pp.57-71
    • /
    • 2012
  • Objectives : The purpose of this study is to find the effects of Sa-Am stomach tonifying acupuncture on radial pulse through the parameters difference. Methods : Forty healthy subjects participated in this study, acupuncture group and control group were divided. Radial pulse were measured using 3 dimensional pulse imaging system(DMP-3000). 19 parameters that significantly changed were selected after comparing between acupuncture group and control group. Then, 19 parameters were analyzed before, immediately after, 30 minutes after and 60 minutes after acupuncture in acupucture group. Results : 1. Heart rate, pulse period, T/T1, T2/T, T4/T, T5/T, T-T4, (T-T4)/T and T4/(T-T4) significantly changed after acupuncture. 2. H1 Amplitude, H2 Amplitude, H4 Amplitude and H5 Amplitude significantly changed after acupuncture. 3. Area of Pulse Wave, Systolic Pulse Area, Diastolic Pulse Area and Area of W significantly changed after acupuncture. 4. AIx/HR significantly changed after acupuncture. Conclusion : Stomach Tonifying Acupuncture exerts an influence on radial pulse parameters. Further radial pulse change study on various acupuncture treatment is required.